首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
细胞程序性死亡因子(programmed cell death,PDCD)是一类与肿瘤发展相关并在进化上高度保守的蛋白质。PDCD家族由多个成员构成。其中,研究较为深入的包括PDCD1、PDCD2、PDCD4、PDCD5、PDCD6、PDCD7、PDCD8及PDCD10。PDCD在人类的各组织及细胞中广泛分布,其主要功能是对细胞凋亡的调控。目前研究发现,PDCD家族成员可通过不同信号通路实现对肿瘤细胞活力的调控,且某些家族成员的缺失或过表达都会引起机体发生病变,证明其在多种疾病当中具有重要作用。本文汇总了PDCD1、PDCD2、PDCD4、PDCD5、PDCD6、PDCD7、PDCD8、PDCD9、PDCD10、PDCD11、PDCD12的基因结构与蛋白质结构,介绍了各家族成员在细胞程序性死亡过程中的关系,并总结目前所报道的PDCD家族成员在肿瘤,以及多种疾病中所发挥的调控作用,以期帮助科研工作者了解其在细胞凋亡中的作用,以及为肿瘤和相关疾病发生发展的分子机制提供参考。  相似文献   

2.
细胞红蛋白(CYGB)是2002年德国科学家Burmester在小鼠和人体内发现的第四种携氧球蛋白,与肌红蛋白(MB),血红蛋白(HB),脑红蛋白(NGB)属于同一家族,是血红素蛋白家族的新成员.它广泛分布于各个组织器官,跟其他携氧蛋白一样具有携氧,贮氧,氧感受器的功能.研究发现其在脑特定区域神经细胞的细胞质和细胞核都有分布,能够受脑缺氧的诱导,体内、外实验均表明其在缺氧情况下表达上调,能增加脑组织对缺氧的耐受能力,抵抗氧化应激所致损伤.缺氧所导致的脑损伤发生率很高,而且此类脑损伤严重影响了人类的健康和生活.所以,对细胞红蛋白进行深入的研究和探讨对于缺氧缺血性脑病,脑卒中,脑肿瘤等缺氧性脑疾病的预防和治疗有重大意义.此综述,通过概括细胞红蛋白的结构,脑内的分布,对缺氧的反应等说明其对缺氧性脑损伤潜在的保护作用.  相似文献   

3.
神经轴突生长抑制因子Nogo 家族的研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
Nogo家族是一类神经轴突生长抑制因子家族,目前成员包括Nogo-A,Nogo-B,Nogo-C三个亚型。Nogo家族成员因C末端具有保守的RHD结构域而归属于RTNs家族,表明它们的分布和功能与内质网密切相关。Nogo家族C末端还具有一个进化保守的66氨基酸的功能段称为Nogo-66,体外表达的Nogo-66片段具有抑制神经突生长的作用。Nogo家族成员结构上的区别主要表现在不同剪切长短的N末端序列。Nogo-A主要在中枢和外周神经系统中广泛分布,Nogo-C主要分布在骨骼肌,而Nogo-B则几乎遍布于各种组织与细胞之中。目前,发现可介导Nogo胞内信号转导通路的受体主要是膜外糖蛋白偶联的NgR和跨膜受体p75NTR组成的共受体,但NgR与Nogo-A在胚胎发育中时空表达并不同步提示可能还有其它受体存在。虽然Nogo家族作为神经轴突生长抑制因子被发现,但越来越多的研究表明其可能在胚胎发育、细胞凋亡或神经退行性变等重大事件中扮演重要角色。本文拟就Nogo家族迄今为止突出的研究进展作一综述,旨在为下一步的功能研究工作提供理论参考和依据。  相似文献   

4.
曹步清  倪鑫 《生命的化学》2008,28(2):182-185
热激蛋白(heat shock protein,HSP)是广泛存在于生物体内,在生物进化过程中序列高度保守的蛋白质家族.HsP27是HSP家族中的重要一员,在机体应激的情况下表达增加,通过分子伴侣作用、抗细胞凋亡和抗氧化应激等作用保护细胞,同时HSP27与多种临床疾病密切相关.  相似文献   

5.
p66ShcA蛋白是哺乳动物原癌基因Shc家族成员中的一员,除具有该家族特有的保守结构域(PTB和SH2)外,在N端具有特有的CH2结构域。当细胞在外界压力(H2O2、UV)刺激条件下,p66ShcA蛋白CH2结构域中36位的苏氨酸磷酸化,参与p53介导的凋亡信号通路,促进细胞凋亡。近年的研究阐明了氧应激引起的细胞凋亡和机体衰老之间的关系,因此,p66ShcA蛋白是联系细胞凋亡和衰老的交汇点。目前通过对p66ShcA蛋白转录方式的研究发现,p66ShcA蛋白启动子甲基化和p66ShcA蛋白的表达有负调控作用,所以对p66ShcA蛋白表达的调控,为延缓机体衰老及治疗由衰老引起的各种疾病带来新的思路。  相似文献   

6.
Kindlin家族成员研究进展   总被引:2,自引:0,他引:2  
Kindlin是一族新发现的黏着斑蛋白,包括Kindlin-1、Kindlin-2和Kindlin-3三个成员.不同Kindlin家族成员在进化上具有高度同源性和保守性,参与了多种重要细胞生理过程,例如细胞迁移、增殖和分化的调控.Kindlin通过与β整合素胞内段的相互作用,在细胞-细胞外基质黏附、细胞-细胞间连接、细胞骨架重构以及整合素介导的双向信号传递中都具有重要作用.Kindlin家族成员的异常与多种遗传性疾病、心血管疾病及肿瘤的发生和发展密切相关.Kindlin与整合素作用机制的深入研究,不但可以丰富对细胞黏附和迁移的理论认识,而且将有助于临床上相关疾病的治疗.  相似文献   

7.
目的:研究视黄醇脱氢酶13(Rdh13)基因在小鼠组织中的表达谱及其亚细胞定位,为其功能研究提供线索。方法:利用生物信息学方法模拟Rdh13的三维结构,采用半定量RT-PCR和Western blot的方法检测小鼠14种组织中Rdh13的表达水平;采用Western blot的方法检测其亚细胞分布;进一步应用免疫荧光共定位的方法观察Rdh13的亚细胞定位。结果:Rdh13具有SDR家族保守的辅酶结合位点(TGX3GXG)和催化活性位点(YX3K);RT-PCR和Western blot实验证实Rdh13在小鼠多种组织中广泛表达,但其表达水平存在一定差异;不同于其它RDHs家族成员,Western blot和免疫荧光共定位提示Rdh13蛋白在细胞中定位于线粒体。结论:Rdh13是一个与Rdh12结构相似的SDR家族成员,在小鼠多个组织中广泛表达;Rdh13蛋白定位于线粒体,有可能作为保护线粒体不受视黄醛毒性作用的屏障。  相似文献   

8.
巨噬细胞广泛分布于生物体的多种组织与器官。它除了具有吞噬作用,物质代谢作用,免疫调节作用外,巨噬细胞还能合成与向外释放IL、PG、IFN、TNF、NO等活性物质,起着十分广泛的信息传递作用,调节多种靶细胞的功能,因此巨噬细胞为多功能效应细胞与信息细胞。它在机体防御、个体发育和损伤组织的修复过程以及诱发某些疾病中起着重要作用  相似文献   

9.
曹步清  倪鑫 《生命的化学》2008,28(4):182-185
热激蛋白(heat shock protein,HSP)是广泛存在于生物体内、在生物进化过程中序列高度保守的蛋白质家族。HSP27是HSP家族中的重要一员,在机体应激的情况下表达增加,通过分子伴侣作用、抗细胞凋亡和抗氧化应激等作用保护细胞,同时HSP27与多种临床疾病密切相关。  相似文献   

10.
白细胞介素-21(IL-21)是γc家族的一个新成员,主要由活化的CD4+ T细胞产生,对多种表达IL-21受体(IL-21R)的细胞如T细胞、B细胞、NK细胞及DC细胞等均有作用。近年发现IL-21与Th细胞系中新发现的分支Th17细胞的发生密切相关,在调节CD4+ T细胞究竟是分化为Th17细胞还是CD4+CD25+Foxp3+ Treg细胞中有"开关"作用,从而对免疫系统发挥重要的调节作用,在自身免疫性疾病和抗肿瘤免疫中扮演着重要的角色。简要综述了IL-21与Th17细胞、CD4+CD25+Foxp3+ Treg细胞之间的关系及对免疫平衡的调节作用。  相似文献   

11.
Expression of matrilins during maturation of mouse skeletal tissues.   总被引:5,自引:0,他引:5  
The matrilins are a recently discovered family of non-collagenous extracellular matrix proteins. During embryogenesis, all matrilins are expressed in skeletal tissues. Additionally, matrilin-2 and -4 are expressed in the dermis and in connective tissues of internal organs, e.g. of the lung and kidney. After birth, the expression of matrilin-1 and -3 remains specific for cartilage and bone whereas matrilin-2 and -4 display a broader tissue distribution and could be detected in epithelial, muscle, and nervous tissue as well as in loose and dense connective tissue. In epiphyseal cartilage of growing long bones, matrilin-1 and -3 are present in all cartilage regions, in contrast to matrilin-2, which is expressed in the proliferative and the upper hypertrophic zones. Similarly matrilin-4 was detected all over the epiphyseal cartilage, with the weakest expression in the hypertrophic zone. Although it was shown that matrilin-1 and -3 can form hetero-oligomers and are often co-localized in tissue, clear differences in their spatial distribution could be demonstrated by double-immunolabelling. During joint development matrilin-2 and matrilin-4 are present at the developing joint surface, while in articular cartilage of 6-week-old mice all matrilins are only weakly expressed.  相似文献   

12.
Matrilins are putative adaptor proteins of the extracellular matrix (ECM) which can form both collagen-dependent and collagen-independent filamentous networks. While all known matrilins (matrilin-1, -2, -3, and -4) are expressed in cartilage, only matrilin-2 and matrilin-4 are abundant in non-skeletal tissues. To clarify the biological role of matrilin-2, we have developed a matrilin-2-deficient mouse strain. Matrilin-2 null mice show no gross abnormalities during embryonic or adult development, are fertile, and have a normal lifespan. Histological and ultrastructural analyses indicate apparently normal structure of all organs and tissues where matrilin-2 is expressed. Although matrilin-2 co-localizes with matrilin-4 in many tissues, Northern hybridization, semiquantitative RT-PCR, immunohistochemistry and biochemical analysis reveal no significant alteration in the steady-state level of matrilin-4 expression in homozygous mutant mice. Immunostaining of wild-type and mutant skin samples indicate no detectable differences in the expression and deposition of matrilin-2 binding partners including collagen I, laminin-nidogen complexes, fibrillin-2 and fibronectin. In addition, electron microscopy reveals an intact basement membrane at the epidermal-dermal junction and normal organization of the dermal collagen fibrils in mutant skin. These data suggest that either matrilin-2 and matrilin-2-mediated matrix-matrix interactions are dispensable for proper ECM assembly and function, or that they are efficiently compensated by other matrix components including wild-type levels of matrilin-4.  相似文献   

13.
The matrilins form a family of oligomeric extracellular adaptor proteins that are most strongly expressed in cartilage but also present in many other extracellular matrices. Matrilins bind to different types of collagen fibrils, to other noncollagenous proteins and to aggrecan. They thereby support matrix assembly by connecting fibrillar components and mediating interactions between these and the aggrecan gel. The binding avidity of a matrilin can be varied by alternative splicing, proteolytic processing and formation of homo- and heterooligomers. Such changes in matrilin structure may lead to a modulation of extracellular matrix assembly. Some matrilins bind weakly to α1β1 integrin and cell surface proteoglycans, but even though matrilins play a role in mechanotransduction and matrilin-3 activates the expression of osteoarthritis-associated genes the physiological relevance of matrilin-cell interactions is unclear. Matrilin knockout mice do not display pronounced phenotypes, which points to a redundancy within the protein family or with functionally related proteins. In man, dominant mutations in the von Willebrand factor A like domain of matrilin-3 lead to a protein retention in the endoplasmic reticulum that causes multiple epiphyseal dysplasia by initiating a cell stress response. In contrast, a mutation in an EGF domain of matrilin-3 that is associated with hand osteoarthritis and disc degeneration does not interfere with secretion but instead with extracellular assembly of matrix structures. In this review we summarize such information on matrilin structure and function that we believe is important for the understanding of extracellular matrix assembly and for deciphering pathophysiological mechanisms in diseases causing skeletal malformations or cartilage degeneration.  相似文献   

14.
The expression of matrilin-1, -2 and -3 was studied in the heart and limb during mouse development. Matrilin-1 is transiently expressed in the heart between days 9.5 and 14.5 p.c. Matrilin-2 expression was detected in the heart from day 10.5 p.c. onwards. In the developing limb bud, both matrilin-1 and -3 were observed first at day 12.5 p.c. Throughout development matrilin-3 expression was strictly limited to cartilage, while matrilin-1 was also found in some other forms of connective tissue. Matrilin-2, albeit present around hypertrophic chondrocytes in the growth plate, was mainly expressed in non-skeletal structures. The complementary, but in part overlapping, expression of matrilins indicates the possibility for both redundant and unique functions among the members of this novel family of extracellular matrix proteins.  相似文献   

15.
The matrilins are a family of four noncollagenous oligomeric extracellular matrix proteins with a modular structure. Matrilins can act as adapters which bridge different macromolecular networks. We therefore investigated the effect of collagen IX deficiency on matrilin-3 integration into cartilage tissues. Mice harboring a deleted Col9a1 gene lack synthesis of a functional protein and produce cartilage fibrils completely devoid of collagen IX. Newborn collagen IX knockout mice exhibited significantly decreased matrilin-3 and cartilage oligomeric matrix protein (COMP) signals, particularly in the cartilage primordium of vertebral bodies and ribs. In the absence of collagen IX, a substantial amount of matrilin-3 is released into the medium of cultured chondrocytes instead of being integrated into the cell layer as in wild-type and COMP-deficient cells. Gene expression of matrilin-3 is not affected in the absence of collagen IX, but protein extraction from cartilage is greatly facilitated. Matrilin-3 interacts with collagen IX-containing cartilage fibrils, while fibrils from collagen IX knockout mice lack matrilin-3, and COMP-deficient fibrils exhibit an intermediate integration. In summary, the integration of matrilin-3 into cartilage fibrils occurs both by a direct interaction with collagen IX and indirectly with COMP serving as an adapter. Matrilin-3 can be considered as an interface component, capable of interconnecting macromolecular networks and mediating interactions between cartilage fibrils and the extrafibrillar matrix.  相似文献   

16.
Expression of matrilin-2 in oval cells during rat liver regeneration.   总被引:2,自引:0,他引:2  
The matrilins represent a new family of oligomeric proteins that are assumed to act as adapter molecules connecting other proteins and proteoglycans in the extracellular matrix. Matrilin-2, the largest member of the family, displays a broad tissue distribution. It incorporates into loose and dense connective tissue and becomes associated with some basement membranes. The aim of our study was to analyse the expression of matrilin-2 in two liver regeneration models and to identify its cellular origin. Liver regeneration was induced in rats by partial hepatectomy (PH) and by the 2-acetylaminofluorene (AAF)/partial hepatectomy (PH) experimental models. Formalin fixed, paraffin embedded tissue sections were used for immunohistochemistry applying a rabbit matrilin-2 polyclonal antibody. Matrilin-2 was detected in normal rat liver and partially hepatectomized liver in the portal area, but could not be demonstrated in the acini. Matrilin-2 mRNA expression was analysed by RT-PCR and in situ hybridization. In the AAF/PH model the oval cells but not the hepatocytes produced matrilin-2 mRNA. Increase in protein level in the AAF/PH regenerating liver model was demonstrated by Western blotting. The protein was present in the basement membrane zone around the tubules formed by oval cells. Our data show that hepatic oval cells produce matrilin-2, a novel ECM protein, suggesting that matrilin-2 is an important component of ECM during stem cell-driven liver regeneration.  相似文献   

17.
The matrilins: a novel family of oligomeric extracellular matrix proteins.   总被引:8,自引:0,他引:8  
The matrilin family at present has four members that all share a structure made up of von Willebrand factor A domains, epidermal growth factor-like domains and a coiled coil alpha-helical module. The first member of the family, matrilin-1 (previously called cartilage matrix protein or CMP), is expressed mainly in cartilage. Matrilin-3 has a similar tissue distribution, while matrilin-2 and -4 occur in a wide variety of extracellular matrices. Matrilin-1 is associated with cartilage proteoglycans as well as being a component of both collagen-dependent and collagen-independent fibrils and on the basis of the related structures other matrilins may play similar roles. The matrilin genes are strictly and differently regulated and their expression may serve as markers for cellular differentiation.  相似文献   

18.
The matrilins form a family of non-collagenous adaptor proteins in the extracellular matrix. The extracellular ligand interactions of matrilins have been studied in some detail, while the potential interplay between matrilins and cells has been largely neglected. Except for matrilin-4, all matrilins mediate cell attachment, but only for matrilin-1 and -3 the binding is clearly dose dependent and seen already at moderate coating concentrations. Even so, much higher concentrations of matrilin-1 or -3 than of fibronectin are required for cell attachment to reach plateau values. Integrins contribute to the matrilin-mediated cell attachment, but the binding does not lead to formation of focal contacts and reorganisation of the actin cytoskeleton. Cells deficient in beta1 integrins are able to adhere, although weaker, and matrilins do not bind the soluble integrin alpha1beta1 and alpha2beta1 ectodomains. Cell surface proteoglycans may promote the attachment, as cells deficient in glycosaminoglycan biosynthesis adhere less well to matrilin-3. Even so, exogenous glycosaminoglycans are not able to compete for the attachment of HaCaT cells to matrilins.  相似文献   

19.
Matrilin-1 is the prototypical member of the matrilin protein family and is highly expressed in cartilage. However, gene targeting of matrilin-1 in mouse did not lead to pronounced phenotypes. Here we used the zebrafish as an alternative model to study matrilin function in vivo. Matrilin-1 displays a multiphasic expression during zebrafish development. In an early phase, with peak expression at about 15 h post-fertilization, matrilin-1 is present throughout the zebrafish embryo with exception of the notochord. Later, when the skeleton develops, matrilin-1 is expressed mainly in cartilage. Morpholino knockdown of matrilin-1 results both in overall growth defects and in disturbances in the formation of the craniofacial cartilage, most prominently loss of collagen II deposition. In fish with mild phenotypes, certain cartilage extracellular matrix components were present, but the tissue did not show features characteristic for cartilage. The cells showed endoplasmic reticulum aberrations but no activation of XBP-1, a marker for endoplasmic reticulum stress. In severe phenotypes nearly all chondrocytes died. During the early expression phase the matrilin-1 knockdown had no effects on cell morphology, but increased cell death was observed. In addition, the broad deposition of collagen II was largely abolished. Interestingly, the early phenotype could be rescued by the co-injection of mRNA coding for the von Willebrand factor C domain of collagen IIα1a, indicating that the functional loss of this domain occurs as a consequence of matrilin-1 deficiency. The results show that matrilin-1 is indispensible for zebrafish cartilage formation and plays a role in the early collagen II-dependent developmental events.  相似文献   

20.
Matrilin-4 is the most recently identified member of the matrilin family of von Willebrand factor A-like domain containing extracellular matrix adapter proteins. Full-length matrilin-4 was expressed in 293-EBNA cells, purified using affinity tags, and subjected to biochemical characterization. The largest oligomeric form of recombinantly expressed full-length matrilin-4 is a trimer as shown by electron microscopy, SDS-polyacrylamide gel electrophoresis, and mass spectrometry. Proteolytically processed matrilin-4 species were also detected. The cleavage occurs in the short linker region between the second von Willebrand factor A-like domain and the coiled-coil domain leading to the release of large fragments and the formation of dimers and monomers of intact subunits still containing a trimeric coiled-coil. In immunoblots of calvaria extracts similar degradation products could be detected, indicating that a related proteolytic processing occurs in vivo. Matrilin-4 was first observed at day 7.5 post-coitum in mouse embryos. Affinity-purified antibodies detect a broad expression in dense and loose connective tissue, bone, cartilage, central and peripheral nervous systems and in association with basement membranes. In the matrix formed by cultured primary embryonic fibroblasts, matrilin-4 is found in a filamentous network connecting individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号