首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 C to 300 C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 C and 250 C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 C and 250 C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.  相似文献   

2.
The formation of lipid compounds during anaqueous Fischer-Tropsch-type reaction was studied withsolutions of oxalic acid as the carbon and hydrogensource. The reactions were conducted in stainlesssteel vessels by heating the oxalic acid solution atdiscrete temperatures from 100 to 400 °C, atintervals of 50 °C for two days each. Themaximum lipid yield, especially for oxygenatedcompounds, is in the window of 150–250 °C. At atemperature of 100 °C only a trace amount oflipids was detected. At temperatures above150 °C the lipid components ranged from C12to >C33 and included n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanals, n-alkanones, n-alkanes, andn-alkenes, all with essentially no carbon numberpreference. The n-alkanes increased inconcentration over the oxygenated compounds attemperatures of 200 °C and above, with a slightreduction in their carbon number ranges due tocracking. It was also noted that the n-alkanoicacids increased while n-alkanols decreased withincreasing temperature above 200 °C. Attemperatures above 300 °C synthesis competeswith cracking and reforming reactions. At 400 °Csignificant cracking was observed and polynucleararomatic hydrocarbons and their alkylated homologswere detected. The results of this work suggest thatthe formation of lipid compounds by aqueous FTTreactions proceeds by insertion of a CO group at theterminal end of a carboxylic acid functionality toform n-oxoalkanoic acids, followed by reductionto n-alkanoic acids, to n-alkanals, thento n-alkanols. The n-alkenes areintermediate homologs for n-alkan-2-ones andn-alkanes. This proposed mechanism for aqueousFTT synthesis differs from the surface-catalyzedstepwise FT process (i.e., gaseous) of polymerization of methylene reported in the literature.  相似文献   

3.
Prebiotic synthesis in atmospheres containing CH4, CO,and CO2   总被引:2,自引:0,他引:2  
The prebiotic synthesis of organic compounds using a spark discharge on various simulated primitive earth atmospheres at 25 degrees C has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and whether NH3 was present, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all gave about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For a H2/CO2 ratio of 0, the yield of amino acids is extremely low (10(-3)%). Glycine is almost the only amino acid produced from CO and CO2 model atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that an abundance of amino acids more complex than glycine was required for the origin of life, then these results indicate the requirement for CH4 in the primitive atmosphere.  相似文献   

4.
It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.  相似文献   

5.
The synthesis of amino acids by Methanobacterium omelianskii   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Methanobacterium omelianskii was grown on (14)CO(2) and unlabelled ethanol, or on [1-(14)C]- or [2-(14)C]-ethanol and unlabelled carbon dioxide. The cell protein was hydrolysed and certain of the amino acids were isolated and degraded. 2. Carbon from both carbon dioxide and ethanol is used for biosynthesis of amino acids, and in most cases ethanol is incorporated as a C(2) unit. Ethanol carbon atoms and carbon dioxide carbon atoms apparently enter the same range of compounds. Ethanol and carbon dioxide are equally important as sources of cell carbon. 3. The origins of carbon atoms of aspartate, alanine, glycine, serine and threonine are consistent with the synthesis of these amino acids, by pathways known to exist in aerobic organisms, from pyruvate arising by a C(2)+C(1) condensation. The proportion of total radioactivity found in C-1 of lysine, proline, methionine and valine is consistent with synthesis of these amino acids by pathways similar to those found in Escherichia coli. Isoleucine is probably formed by carboxylation of a C(5) precursor formed entirely from ethanol. Glutamate is formed by an unknown pathway.  相似文献   

6.
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids.  相似文献   

7.
The gases CO, CO2, and H2 were used as substrates in anaerobic fermentations producing organic acids. Various mixed bacterial sources were used, including sewage sludge digester effluent, rabbit feces, and soil. Nonsterile microorganism selection was carried out using CO2/H2 and CO/H2 as the primary carbon and energy sources. Cultures were grown in specially designed, high-pressure (to 70 psig) flasks. Methanogenic bacteria were eliminated from the cultures. Liquid products of the fermentations were acetic through caproic acids, with the even-numbered acids predominating. Carbon balances showed conclusively that acetic acid was formed from carbon contained in the CO or CO2 feed gas. Measurements made included rates of acid product formation, cell density, and degree of gas utilization. Limited characterization of the microorganisms was also performed. Production of organic acids by mixed culture inocula from CO2/H2 or CO/H2 had not been reported previously. Application of this work is to the production of organic chemicals from synthesis gas (SNG), produced by the gasification of fossil fuels (peat, lignite, and various ranks of coals), biomass (agricultural and forest residues, and various biomass crops grown expressly for energy recovery), and municipal solid waste.  相似文献   

8.
Mycelial growth of an isolate ofT. bakamatsutake was tested in media with C/N ratio ranging from 0 to 50 and with 32 carbon and 12 nitrogen sources. The isolate grew best at the C/N ratio of 30. It utilized the monosaccharidesd-glucose,d-mannose, andd-fructose, the disaccharide trehalose, and polysaccharide pectin among the carbon sources; and yeast extract,l-glutamic acid, and ammonium compounds among the nitrogen sources. The growth of ten isolates and secretion of gluconic and oxalic acids were compared ind-glucose, trehalose, and pectin media. The utilization ofd-glucose, trehalose, and pectin differed among the ten isolates, but all the isolates secreted gluconic acid in thed-glucose media and oxalic acid in the pectin media.  相似文献   

9.
The thermodynamic potential for the abiotic synthesis of the five common nucleobases (adenine, cytosine, guanine, thymine, and uracil) and two monosaccharides (ribose and deoxyribose) from formaldehyde and hydrogen cyanide has been quantified under temperature, pressure, and bulk composition conditions that are representative of hydrothermal systems. The activities of the precursor molecules (formaldehyde and hydrogen cyanide) required to evaluate the thermodynamics of biomolecule synthesis were computed using the concentrations of aqueous N2, CO, CO2 and H2 reported in the modern Rainbow hydrothermal system. The concentrations of precursor molecules that can be synthesized are strongly dependent on temperature with larger concentrations prevailing at lower temperatures. Similarly, the thermodynamic drive to synthesize nucleobases, ribose and deoxyribose varies considerably as a function of temperature: all of the biomolecules considered in this study are thermodynamically favored to be synthesized throughout the temperature range from 0°C to between 150°C and 250°C, depending on the biomolecule. Furthermore, activity diagrams have been generated to illustrate that activities in the range of 10−2– 10−6 for nucleobases, ribose and deoxyribose can be in equilibrium with a range of precursor molecule activities at 150°C and 500 bars. The results presented here support the notion that hydrothermal systems could have played a fundamental role in the origin of life, and can be used to plan and constrain experimental investigation of the abiotic synthesis of nucleic-acid related biomolecules.  相似文献   

10.
从河北省迁安市马兰庄镇铁尾矿植被恢复区油松根际分离出2株溶磷细菌,经过平板初筛和摇瓶复筛得到1株溶磷能力较强的菌株D2.通过菌落形态、生理生化特性及16S rDNA序列分析,确定此菌株D2属于泛菌属.利用液体发酵试验测定不同碳源、氮源对菌株D2溶磷能力的影响,通过高效液相色谱测定D2在不同氮源条件下产生有机酸的种类和浓度.结果表明:菌株D2对磷酸三钙有较强的溶磷能力,培养液有效磷含量最高为392.13 mg·L-1,菌株D2的溶磷能力在碳源为葡萄糖、氮源为硫酸铵时效果最好;高效液相色谱测定发现,不同氮源条件下,D2分泌有机酸的种类和浓度存在差异,以硫酸铵、氯化铵、硝酸钾、硝酸钠、硝酸铵为氮源,均产生草酸、甲酸、乙酸和柠檬酸,以硫酸铵、氯化铵、硝酸铵为氮源还产生苹果酸.相关性分析表明,乙酸含量与有效磷含量间呈显著正相关(r=0.886,P<0.05),表明溶磷泛菌D2分泌的乙酸对无机磷的溶解有明显的促进作用,这也很可能是该菌株的重要溶磷机制之一.  相似文献   

11.
One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.  相似文献   

12.
Hydrothermal systems are common along the active tectonic areas of the earth. Potential sites being studied for organic matter alteration and possible organic synthesis are spreading ridges, off-axis systems, back-arc activity, hot spots, volcanism, and subduction. Organic matter alteration, primarily reductive and generally from immature organic detritus, occurs in these high temperature and rapid fluid flow hydrothermal regimes. Hot circulating water (temperature range — warm to >400 °C) is responsible for these molecular alterations, expuslion and migration. Compounds that are obviously synthesized are minor components because they are generally masked by the pyrolysis products formed from contemporary natural organic precursors. Heterocyclic sulfur compounds have been identified in high temperature zones and hydrothermal petroleums of the Guaymas Basin vent systems. They can be interpreted as being synthesized from formaldehyde and sulfur or HS x in the hydrothermal fluids.Other products from potential synthesis reactions have not yet been found in the natural systems but are expected based on known industrial processes and inferences from experimental simulation data. Various industrial processes have been reviewed and are of relevance to hydrothermal synthesis of organic compounds. The reactivity of organic compounds in hot water (200–350 °C) has been studied in autoclaves, and supercritical water as a medium for chemistry has also been evaluated. This high temperature aqueous organic chemistry and the strong reducing conditions of the natural systems suggest this as an important route to produce organic compounds on the primitive earth. Thus a better understanding of the potential syntheses of organic compounds in hydrothermal systems will require investigations of the chemistry of condensation, autocatalysis, catalysis and hydrolysis reactions in aqueous mineral buffered systems over a range of temperatures from warm to >400 °C.Presented in part at the International Society for the Study of the Origin of Life Meeting, Barcelona, Spain, July 1993.  相似文献   

13.
The nitrifying bacterium Nitrosomonas europaea can obtain all its carbon for growth from CO(2) and all its energy and reductant for growth from the oxidation of NH(3) and is considered an obligate chemolithoautotroph. Previous studies have shown that N. europaea can utilize limited amounts of certain organic compounds, including amino acids, pyruvate, and acetate, although no organic compound has been reported to support the growth of N. europaea. The recently completed genomic sequence of N. europaea revealed a potential permease for fructose. With this in mind, we tested if N. europaea could utilize fructose and other compounds as carbon sources to support growth. Cultures were incubated in the presence of fructose or other organic compounds in sealed bottles purged of CO(2). In these cultures, addition of either fructose or pyruvate as the sole carbon source resulted in a two- to threefold increase in optical density and protein content in 3 to 4 days. Studies with [(14)C]fructose showed that >90% of the carbon incorporated by the cells during growth was derived from fructose. Cultures containing mannose, glucose, glycerol, mannitol, citrate, or acetate showed little or no growth. N. europaea was not able to grow with fructose as an energy source, although the presence of fructose did provide an energy benefit to the cells. These results show that N. europaea can be grown in CO(2)-free medium by using fructose and pyruvate as carbon sources and may now be considered a facultative chemolithoorganotroph.  相似文献   

14.
Fatty acids in fish can arise from two sources: synthesis de novo from non‐lipid carbon sources within the animal, or directly from dietary lipid. Acetyl‐CoA derived mainly from protein can be converted to saturated fatty acids via the combined action of acetyl‐CoA carboxylase and fatty acid synthetase. The actual rate of fatty acid synthesis de novo is inversely related to the level of lipid in the diet. Freshwater fish can de‐saturate endogenously‐synthesized fatty acids to monounsaturated fatty acids via a A9 desaturase but lack the necessary enzymes for complete de novo synthesis of polyunsaturated fatty acids which must therefore be obtained preformed from the diet. Most freshwater fish species can desaturate and elongate 18:2(n‐6) and 18:3(n‐3) to their C20 and C22 homologues but the pathways involved remain ill‐defined. Cyclooxygenase and lipoxygenase enzymes can convert C20 polyunsaturated fatty acids to a variety of eicosanoid products. The dietary ratio of (n‐3) to (n‐6) polyunsaturated fatty acids influences the pattern of eicosanoids formed. The ß‐oxidation of fatty acids can occur in both mitochondria and peroxisomes but mi‐tochondrial ß‐oxidation is quantitatively more important and can utilise a wide range of fatty acid substrates.  相似文献   

15.
The impact of elevated atmospheric CO2 on qualitative and qua ntitative changes in rhizosphere carbon flow will have important consequences fo r nutrient cycling and storage in soil, through the effect on the activity, biom ass size and composition of soil microbial communities. We hypothesized that mic robial communities from the rhizosphere of Danthonia richardsonii, a n ative C3 Australian grass, growing at ambient and twice ambient CO2 a nd varying rates of low N application (20, 60, 180 kg N ha-1) will be different as a consequence of qualitative and quantitative change in rhizosphere carbon flow. We used the BiologTM system to construct sole carbon source utilisation profiles of these communities from the rhizosphere of D. richardsonii. BiologTM GN and MT plates, the latter to which more ecologically relevant root exudate carbon sources were added, were used to characterise the communities. Microbial communities from the rhizosphere of D. richardsonii grown for four years at twice ambient CO2 had significantly greater utilisation of all carbon sources except those with a low C:N ratio (neutral and acidic amino acids, amides, N-heterocycles, long chain aliphatic acids) than communities from plants grown at ambient CO2. This indicates a change in microbial community composition suggesting that under elevated CO2 compounds with a higher C:N ratio were exuded. Enumeration of microorganisms, using plate counts, indicated that there was a preferential stimulation of fungal growth at elevated CO2 and confirmed that bacterial metabolic activity (C utilisation rates), not population size (counts), were stimulated by additional C flow at elevated CO2. Nitrogen was an additional rate-limiting factor for microbial growth in soil and had a significant impact on the microbial response to elevated CO2. Microbial populations were higher in the rhizosphere of plants receiving the highest N application, but the communities receiving the lowest N application were most active. These results have important implications for carbon turnover and storage in soils where changes in soil microbial community structure and stimulation of the activity of microorganisms which prefer to grow on rhizodeposits may lead to a decrease in the composition of organic matter and result in an accumulation of soil carbon.  相似文献   

16.
Conversion of CO2 to organic compounds in hydrothermal systems is important in understanding prebiotic chemical evolution leading to the origin of life. However, organic compounds with carbon number of more than 3 have never been produced from dissolved CO2 in simulated hydrothermal experiments. In this paper, we report that not only CH4, C2H6 and C3H8, but also n-C4H10 and n-C5H12 could be produced from dissolved CO2 and H2 in the presence of cobalt-bearing magnetite at 300°C and 30 MPa. It is shown that unbranched alkanes in Anderson–Schulz–Flory distribution were the dominant hydrocarbon products produced from dissolved CO2 catalyzed by cobalt-bearing magnetite under certain hydrothermal conditions. It is proposed that magnetite with other transition metals may act potentially as effective mineral catalysts for abiotic formation of organic compounds from dissolved CO2 in hydrothermal systems.  相似文献   

17.
Photoproduction of H2 and activation of H2 for CO2 reduction (photoreduction) by Rhodopseudomonas capsulata are catalyzed by different enzyme systems. Formation of H2 from organic compounds is mediated by nitrogenase and is nto inhibited by an atmosphere of 99% H2. Cells grown photoheterotrophically on C4 dicarboxylic acids (with glutamate as N source) evolve H2 from the C4 acids and also from lactate and pyruvate; cells grown on C3 carbon sources, however, are inactive with the C4 acids, presumably because they lack inducible transport systems. Ammonia is known to inhibit N2 fixation by photosynthetic bacteria, and it also effectively prevents photoproduction of H2; these effects are due to inhibition and, in part, inactivation of nitrogenase. Biosynthesis of the latter, as measured by both H2 production and acetylene reduction assays, is markedly increased when cells are grown at high light intensity; synthesis of the photoreduction system, on the other hand, is not appreciably influenced by light intensity during photoheterotrophic growth. The photoreduction activity of cells grown on lactate + glutamate (which contain active nitrogenase) is greatly activated by NH4+, but this effect is not observed in cells grown with NH4+ as N source (nitrogenase repressed) or in a Nif- mutant that is unable to produce H2. Lactate, malate, and succinate, which are readily used as growth substrates by R. capsulata and are excellent H donors for photoproduction of H2, abolish photoreduction activity. The physiological significances of this phenomenon and of the reciprocal regulatory effects of NH4+ on H2 production and photoreduction are discussed.  相似文献   

18.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

19.
The lipids of the heterotrophic microalga Crypthecodinium cohnii contain the omega-3 polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (22:6) to a level of over 30%. The pathway of 22:6 synthesis in C. cohnii is unknown. The ability of C. cohnii to use 13C-labelled externally supplied precursor molecules for 22:6 biosynthesis was tested by 13C NMR analysis. Furthermore, the presence of desaturases (typical for aerobic PUFA synthesis) was studied by the addition of specific desaturase inhibitors in the growth medium. The addition of 1-(13)C acetate or 1-(13)C butyrate in the growth medium resulted in 22:6 with only the odd carbon atoms enriched. Apparently, two-carbon units were used as building blocks for 22:6 synthesis and butyrate was first split into two-carbon units prior to incorporation in 22:6. When 1-(13)C oleic acid was added to the growth medium, 1-(13)C oleic acid was incorporated into the lipids of C. cohnii but was not used as a precursor for the synthesis of 22:6. Specific desaturase inhibitors (norflurazon and propyl gallate) inhibited lipid accumulation in C. cohnii. The fatty acid profile, however, was not altered. In contrast, in the arachidonic acid-producing fungus, Mortierella alpina, these inhibitors not only decreased the lipid content but also altered the fatty acid profile. Our results can be explained by the presence of three tightly regulated separate systems for the fatty acid production by C. cohnii, namely for (1). the biosynthesis of saturated fatty acids, (2). the conversion of saturated fatty acids to monounsaturated fatty acids and (3). the de novo synthesis of 22:6 with desaturases involved.  相似文献   

20.
An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号