首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
One of the keys to understanding and identifying life on other planets is to study the preservation of organic compounds and their precursor micro-organisms on Earth. Rio Tinto in southwestern Spain is a well documented site of microbial preservation within iron sulphates and iron oxides over a period of 2.1 Ma. This study has investigated the preservation of filamentous iron oxidising bacteria and organics through optical microscopy, scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) spectroscopy, from laboratory cultures of natural samples to contemporary natural materials to million-year old river terraces. Up to 40% elemental carbon and >7% nitrogen has been identified within microbial filaments and cell clusters in all samples through SEM EDS analyses. FTIR spectroscopy identified C-H(x) absorption bands between 2960 and 2800 cm(-1), Amide I and II absorption bands at 1656 and 1535 cm(-1), respectively and functional group vibrations from within nucleic acids at 917, 1016 and 1124 cm(-1). Absorption bands tracing the diagenetic transformation of jarosite to goethite to hematite through the samples are also identified. This combination of mineralogy, microbial morphology and biomolecular evidence allows us to further understand how organic fossils are created and preserved in iron-rich environments, and ultimately will aid in the search for the earliest life on Earth and potential organics on Mars.  相似文献   

2.
Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to identify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to collectively as “tar” or “tholin.” These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive “dead ends” under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. They are components of RNA and their reactivity can support both interesting spontaneous chemistry as part of a “carbohydrate world,” but they also easily form mixtures, polymers and tars. We describe here the latest thoughts on how on this challenge, focusing on how it might be resolved using minerals containing borate, silicate, and molybdate, inter alia.Interesting organic chemistry occurs throughout the cosmos, including in presolar nebulae (see the article in this collection by Pascale Erhrenfreund), asteroidal bodies (see the article in this collection by Sandra Pizzarello) and icy bodies near the outer boundary of our solar system (Bernstein et al. 2002). Although organic molecules made in off-Earth locales almost certainly contributed to the reduced carbon inventory on Earth before life emerged, planetary processing on Earth undoubtedly also contributed to the inventory of prebiotic molecules that were available to life as it originated (assuming that Earth was the site of life''s origin). Indeed, in the RNA first model for the origin of life on Earth (Joyce and Orgel 1999)(Benner 2009), it is often proposed that terran-based chemistry produced RNA in oligomeric form to initiate Darwinian evolution.How are we to constrain models for planetary processing to converge on a model for what actually happened on Earth four billion years ago? Today, atmospheric dioxygen (O2) readily converts organic materials to carbon dioxide, making it essentially impossible to observe such processing on the surface of Earth. Furthermore, the ubiquity of life on modern Earth means that any organic processing is more likely to reflect biology than prebiology. The closest we may come today to observe organic transformations absent biology on a planetary scale might be on Titan, a moon of Saturn whose atmosphere and surface is rich in reduced carbon.Nevertheless, it is possible to apply a general understanding of organic chemical reactivity to suggest chemical reactions that might have occurred on early Earth and the products that they might have produced. These suggestions are constrained by models for the atmosphere and mineralogy of early Earth, although these constraints might change as models improve.In this article, we assume that the atmosphere of early Earth was less oxidizing than today''s atmosphere, although not as rich in methane as the simulated atmosphere used in the classic experiments of Stanley Miller (Miller 1955). Further, we assume that the atmosphere on early Earth had access to many sources of energy. These include electrical discharge, ultraviolet and visible light (although the Sun was almost certainly dimmer then than now, a Titan-like haze may have prevented high energy photons from reacting the Earth''s surface), volcanism (providing not only heat but also reactive species and mixtures not at thermodynamic equilibrium), ionizing radiation, and impacts. (See Pizzarello and Shock 2010 for a discussion of such energy sources.)We also assume that life emerged after the planet underwent a geological fractionation in which heavier minerals and elemental iron sank towards the core, leaving lighter rocks to form the crust. Open questions concern the inventory of water relative to the surface of early Earth, an inventory that determined whether planetary organic transformations might have occurred on dry land or below water on a planetary surface that was totally submerged.  相似文献   

3.
The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only slight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.  相似文献   

4.
Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.  相似文献   

5.
An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals.  相似文献   

6.
早期地球的环境变化和生命的化学进化   总被引:4,自引:0,他引:4  
生命起源是当代最大的科学疑谜之一,也是历来人类普遍关注的一个焦点。在地球上最早的生物出现之前,有机物经历了漫长而复杂的化学进化过程,称为生命的化学进化。地球上生命的化学进化与非生物部分的早期演化过程,是密切地相互关联、相互作用并相互制约的。文章着重阐述与生命的化学关系最为密切的冥古宙和太古宙的地球演化历史,指出这两个阶段所形成的还原性原始大气和古海洋条件在生命的化学进行中起了极其重要的作用,并且从宇宙形成、太阳系演化和地球环境早期演化的角度,探讨地球生命的化学进化历程;以地球形成初期发生了一系列复杂的有机化学反应过程,由无机分子生成生物小分子,再进一步生成生物大分子,直至最后产生原始细胞。此外,文章评述当前国际上最流行的生命化学进化学说,对早期地球的化学进化是发生在地球表面的原始海洋、粘土矿物、火山喷发等,或是来源于地球之外的宇宙空间进行了综合的阐述。  相似文献   

7.
The goal of this chapter is to suggest some organic compounds which may be indicative of prebiotic processes in hydrothermal systems or laboratory simulations of them. While the exact processes which led to the origins of life are not known, studies of life's origins of the past forty years have uncovered a plethora of potential precursor molecules. Some of these same molecules were probably present in hydrothermal systems if chemical processes there had a role in the origins of life. The types of molecules formed in primitive Earth simulation experiments and observed in the interstellar medium, on comets and meteorites will be reviewed in Section 2 of this chapter. Some reactions involving these molecules which may have been important in prebiotic syntheses will be outlined. Since near- to supercritical water is found in hydrothermal systems, its properties and aspects of organic chemistry in supercritical water at high temperature and pressure will be discussed in Section 3. Fischer-Tropsch type (FTT) reactions, which are a potential source of the building blocks of biological molecules in hydrothermal systems, are discussed in Section 4. In the concluding section, Section 5, the possible formation in hydrothermal systems of organic molecules that are believed to have been important for the origins of life is discussed.  相似文献   

8.
In the answer to major questions of astrobiology and chirality, the panspermia-hypothesis is often discussed as the only proposal of transportation of life to the Earth. On the basis of the known presence of ionizing radiation in the space, assumed on the level calculated by Clark (Orig Life Evol Biosph 31:185–197, 2001), the hypothesis is rejected as the explanation of origins of life on Earth. In fact, comparatively low doses of radiation sterilize irreversibly all biological material. Sufficiently long sojourn in space of objects containing prebiotic chemical blocks also does not contribute to the origins of life on Earth, because of elimination of homochirality, if any, and of radiation induced reactions of dehydrogenation, decarboxylation and deamination of chemical compounds closing with complete decomposition of organics, leaving elementary nano-carbon and/or minerals like calcium carbonate. Presented at the International School of Complexity – 4th Course: Basic Questions on the Origins of Life; “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, 1–6 October 2006.  相似文献   

9.
Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth.  相似文献   

10.
Complex organic compounds have been found in extraterrestrial bodies such as meteorites and comets. We confirmed the formation of complex organic compounds that contained amino acid precursors from a mixture of carbon monoxide (or methanol), ammonia and water by radiation or UV. Molecular weights of the complex organics were several thousands. Stability of the complex precursors was studied. When free amino acids were irradiated with gamma rays or synchrotron radiation, they easily decomposed. The complex precursors were, however, much more stable than free amino acid against irradiation. We propose to examine the formation and alteration of amino acid precursors in space by using exposed facility of ISS.  相似文献   

11.
The photolysis of water vapor with carbon monoxide at 1849 Å yields alcohols, aldehydes and organic acids, with an overall quantum yield of 3.3×10–2. This rather high quantum yield could have led to a contribution of 1011 organic molecules cm–2 sec–1 to the pool of organic material on the primitive Earth. The reactions are initiated by the photolysis of water molecules and the resulting hydrogen atoms reduce the carbon monoxide to a variety of one and two carbon compounds. The organic molecules are dissolved in water and thus escape destruction by photolysis. Photolysis of water vapor with carbon dioxide did not yield organic compounds under these conditions.  相似文献   

12.
Three generations of organic molecules in space are considered: interstellar molecules, molecules synthesised in protosolar cloud and molecules synthesised on the Earth. It is shown that there is no possibilities for amino acid polymers to be synthesised under interstellar cloud conditions. Molecules of the second generation were disintegrated during the Earth accumulation period. The problem of the origin of life is connected with the evolution of molecules of the third generation.  相似文献   

13.
Prebiotic molecules derive from abiotic organic molecules, radicals, and ions that pervade the universe at temperatures as high as several 1000 K. Here we review the role of organic molecules that condensed at low temperatures before or during comet formation in the early history of the Solar System. Recent spacecraft encounters and ground-based observations of carbon-rich volatile and dust components of comet comae provide a broad database for the investigation of these organic molecules. New laboratory data for some potential cometary organics are presented. Probable icy organic constituents of the nucleus and CHON particles as likely candidates for the distributed sources of gas-phase organic species in the coma are discussed. There is broad agreement that many organic molecules observed in the coma originate from the dust that must have existed in the solar nebula at the time and place of comet formation. We conclude that complex organic molecules found in comets may be a source of prebiotic molecules that led to the origins of life.  相似文献   

14.
Origins of life: A comparison of theories and application to Mars   总被引:1,自引:0,他引:1  
The field of study that deals with the origins of life does not have a consensus for a theory of life's origin. An analysis of the range of theories offered shows that they share some common features that may be reliable predictors when considering the possible origins of life on another planet. The fundamental datum dealing with the origins of life is that life appeared early in the history of the Earth, probably before 3.5 Ga and possibly before 3.8 Ga. What might be called the standard theory (the Oparin-Haldane theory) posits the production of organic molecules on the early Earth followed by chemical reactions that produced increased organic complexity leading eventually to organic life capable of reproduction, mutation, and selection using organic material as nutrients. A distinct class of other theories (panspermia theories) suggests that life was carried to Earth from elsewhere — these theories receive some support from recent work on planetary impact processes. Other alternatives to the standard model suggest that life arose as an inorganic (clay) form and/or that the initial energy source was not organic material but chemical energy or sunlight. We find that the entire range of current theories suggests that liquid water is the quintessential environmental criterion for both the origin and sustenance of life. It is therefore of interest that during the time that life appeared on Earth we have evidence for liquid water present on the surface of Mars.  相似文献   

15.
The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.  相似文献   

16.
Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was formed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.  相似文献   

17.
Is the hypothesis correct that if life exists elsewhere in the universe, it would have forms and structures unlike anything we could imagine? From the subatomic level in cellular energy acquisition to the assembly and even behavior of organisms at the scale of populations, life on Earth exhibits characteristics that suggest it is a universal norm for life at all levels of hierarchy. These patterns emerge from physical and biochemical limitations. Their potentially universal nature is supported by recent data on the astrophysical abundance and availability of carbon compounds and water. Within these constraints, biochemical and biological variation is certainly possible, but it is limited. If life exists elsewhere, life on Earth, rather than being a contingent product of one specific experiment in biological evolution, is likely to reflect common patterns for the assembly of living matter.  相似文献   

18.
Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated on Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 °C for 2–3 days and produces lipid compounds ranging from C2 to >C35 which consist of n-alkanols, n- alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.  相似文献   

19.
In the future, human destiny may depend on our ethics. In particular, biotechnology and expansion in space can transform life, raising profound questions. Guidance may be found in Life‐centered ethics, as biotic ethics that value the basic patterns of organic gene/protein life, and as panbiotic ethics that always seek to expand life. These life‐centered principles can be based on scientific insights into the unique place of life in nature, and the biological unity of all life. Belonging to life then implies a human purpose: to safeguard and propagate life. Expansion in space will advance this purpose but will also raise basic questions. Should we expand all life or only intelligent life? Should we aim to create populations of trillions? Should we seed other solar systems? How far can we change but still preserve the human species, and life itself? The future of all life may be in our hands, and it can depend on our guiding ethics whether life will fulfil its full potentials. Given such profound powers, life‐centered ethics can best secure future generations. Our descendants may then understand nature more deeply, and seek to extend life indefinitely. In that future, our human existence can find a cosmic purpose.  相似文献   

20.
The fluidized-bed, granular activated carbon (GAC) anaerobic reactor has been shown to be an effective process for the continuous long-term treatment of wastewaters that contain biodegradable or nonbiodegradable toxic organic compounds. With loadings of 10 g COD/kg GAC day, COD removal of 94% was achieved. The anaerobic biofilm that develops on the GAC reduces the load on the carbon by converting the biodegradable organics to methane and carbon dioxide. Approximately 50% of the COD applied to the reactor was converted to methane, thereby reducing carbon requirements. Successful operation of the system requires that a carbon replacement schedule be maintained that will keep the bulk concentrations of toxic adsorbable compounds below their toxic threshold. As long as toxic substances can be adsorbed by the carbon, they will not inhibit the anaerobic biofilm. If nonadsorbable toxic compounds are present, processing must be included to reduce these materials to concentrations below their threshold level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号