首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of vitelline membrane proteins in Drosophila melanogaster   总被引:1,自引:0,他引:1  
In Drosophila melanogaster, proteins involved in vitelline membrane production are secreted by ovarian follicle cells during stages 9 and 10 of oogenesis. We have used SDS-PAGE and two-dimensional electrophoresis to identify six major size classes of radiolabeled components in purified vitelline membrane preparations. Analyses of in vivo labeled proteins from egg chambers of different developmental stages and stage 10 follicle cells show that components of five of these size classes are synthesized by follicle cells during the period of vitelline membrane deposition. Immunological analysis of eggshell antigens utilizing complex antisera raised to purified eggshell fragments has confirmed the identity of components of three size classes.  相似文献   

2.
3.
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.  相似文献   

4.
Molecular analysis and rescue of a vitelline membrane mutant in Drosophila   总被引:1,自引:0,他引:1  
The eggshell in Drosophila is produced by ovarian follicle cells during the later stages of oogenesis. Eggshell formation involves the ordered synthesis and assembly of several protein components. Genes encoding the most abundant eggshell proteins have been identified by molecular cloning studies. Morphological examination of eggs produced by females carrying female sterile mutations on the X and third chromosomes have revealed additional loci involved in chorion formation. In this study we screened a collection of female sterile mutants carrying EMS-induced mutations on the second chromosome for eggshell mutants. A class of six mutants with potential vitelline membrane defects was identified on the basis of the response of mutant eggs to hypochlorite solutions. Biochemical analysis showed that one mutant, fs(2)QJ42, failed to produce a major vitelline membrane protein, sV23. The mutation was mapped cytogenetically to 26A, a region previously implicated in vitelline membrane formation by molecular cloning studies. Northern blot analysis using a cloned copy of the sV23 gene as probe showed a 10- to 15-fold reduction of sV23 RNA levels in the mutant. sV23 synthesis and fertility were restored when a normal copy of the sV23 gene was introduced into the mutant via germ line transformation. Transposons carrying the sV23 gene with as little as 147 bp of 5' flanking DNA were capable of restoring fertility and sV23 protein to wild type levels.  相似文献   

5.
The eggshell of Drosophila melanogaster is composed of a set of proteins synthesized by the follicular epithelium during the last third of oogenesis and organized into an inner zone (vitelline membrane) and an outer zone (chorion). To study these proteins, the authors developed techniques for mass-isolating follicles of mixed stages, mature (stage 14) follicles, chorion from stage 14 follicles, and chorion and vitelline membrane from laid eggs. The eggshell is composed mainly of protein and is unusually rich in proline and alanine. Six proteins of the chorion have been identified on polyacrylamide gels. The program of synthesis of these proteins was studied by incubating follicles of different developmental stages in culture with 3H-labeled amino acids and displaying the labeled proteins on gels with the aid of autofluorography. The proteins are synthesized in a specific overlapping sequence during stages 10–14, a period when chorion deposition is known to occur. In addition, putative vitelline membrane proteins have been identified by their preferential incorporation of [3H]proline and [3H]alanine during stages of active vitelline membrane synthesis.  相似文献   

6.
Specific mutations in the yolk protein genes, yp1 and yp2, of Drosophila melanogaster cause the yolk proteins (YPs) they encode to precipitate, ultimately resulting in female sterility. YPs of the yp1 mutant fs(1)1163 are secreted normally but then precipitate as globules and occasionally as crystalline fibers in the subbasement membrane space of the fat body (Butterworth et al., 1991, J. Cell Biol. 112, 727-737). The present ultrastructural and immunological studies of the fat body of the yp2 mutant fs(1)K313 show that YP also precipitates as globules in the same tissue compartment. The globules are also incapable of passing into the hemolymph but they are morphologically distinct from those of fs(1)1163. Similar analyses were performed on developing oocytes in wild type and both mutant strains. YP-containing aggregates, ultrastructurally similar to those in the fat body of each respective mutant, were found in the space between the plasmalemma and the vitelline membrane and embedded within the membrane itself. The evidence suggests that the precipitates interfere with the correct assembly of the eggshell membranes, leading to the sterile phenotype. Immunogold studies demonstrate that newly synthesized YPs in the normal and mutant strains share secretory vesicles with putative, vitelline membrane proteins and that the translocation of follicle cell YP is not through the membrane along the interfollicular spaces but directly through the plasmalemma facing the oocyte. Further the YP precipitates in the mutants permit visualization of the polarity of exocytosis of YP from the follicle cells.  相似文献   

7.
Utilizing freeze-fracturing and conventional electron microscopy methods, we have studied the details of morphogenesis and construction of the wax layer envelope from Oregon R and mutants of Drosophila melanogaster egg' s during oogenesis. The wax layer is synthesized and secreted by the follicular cells in the 10b of lipid vesicles during static 10b. During secretion (stages 10b, 11 and 12) the lipid vcsicles are accumulated on the vitelline membrane surface and become flat. At the late stage of choriogenisis (stages 13, 14) the lipid vesicles are compressed tightly between the vitelline membrane and the other already constructed eggshell layers, so the wax layer becomes very thin and is hardly seen in crossfractured views.  相似文献   

8.
Ovarian follicle cells of wild type Drosophila melanogaster simultaneously secrete yolk polypeptides (YP1, YP2 and YP3) and vitelline membrane proteins. In order to understand the relationship between these two secretory activities, we have investigated the ultrastructure of a female sterile mutation that alters YP1 secretion and vitelline membrane deposition. Homozygous fs(1)1163 females lay eggs that collapse and contain reduced quantities of YP1. Secretory granules in follicle cells contain an electron-translucent component that is assembled into the developing vitelline membrane in both mutant and wild-type ovaries, and an electron-dense component that disperses after secretion in wild-type ovaries. Mutant ovaries differ from wild-type by (1) having larger secretory granules (2) forming clumps of the dense secretory component within the developing vitelline membrane (3) accumulating more tubules in the cortical ooplasm of vitellogenic oocytes, and (4) possessing altered yolk spheres. Mutant ovaries implanted into wild-type hosts showed no improvement in the secretory granules and slight improvement in the vitelline membrane clumps but amelioration of the oocyte phenotypes. Since genetic evidence suggests that the fs(1)1163 mutation resides in or near the Yp1 gene and biochemical data show that the mutation alters YP1 structure, we conclude that the ultrastructural phenotypes are due to a structurally abnormal YP1 in the mutant. The alteration in vitelline membrane structure caused by the dense clumps could account for collapsed eggs and, hence, the female sterility of the mutant.  相似文献   

9.
Abstract. During the final step of Drosophila vitelline membrane formation, the structural proteins composing this layer become cross-linked by covalent bonds. In the present report, we analyzed the vitelline membrane cross-linking in mutants having defects either in this layer or in the chorionic layers. In the fs(1)Nasrat and fs(1)polehole mutant alleles conferring defects in vitelline membrane formation, disruption of vitelline membrane cross-linking was observed, indicating the involvement of these two genes in the process. On the contrary, in the fs(1)Nasrat and fs(1)polehole alleles showing defects only at the termini of the embryo the vitelline membrane is properly formed, confirming a multifunctional activity of their gene products. Altered vitelline membrane cross-linking was also detected in a mutant of the chorion protein gene Cp36and in the chorion amplification mutant fs(1)K1214, suggesting a role of the structural components of chorion layers in the process of vitelline membrane hardening.  相似文献   

10.
Summary Thedec-1 eggshell gene inDrosophila melanogaster encodes follicle cell proteins required for proper eggshell assembly. As shown by Southern and Northern analyses thedec-1 gene occurs in four alleles (Fcl-4) among wild-type strains. Its second exon has a distinct feature in the form of 12 repeats with 78–91 nucleotides; the first five show nearly 100% homology. DNA sequence comparison of the repeated region of the alleles revealed that the length polymorphisms are caused by changes in the numbers of the first five repeats. The results suggest that the alleles have been generated by unequal intragenic crossing-over and/or slippage during DNA replication and that the allelic length variants have arisen independently. The possiblilty that the most common allele,FC1, has a selective advantage over the other alleles is discussed.  相似文献   

11.
The Drosophila eggshell is a highly specialized extracellular matrix that forms between the oocyte and the surrounding epithelial follicle cells during late oogenesis. The dec-1 gene, which is required for proper eggshell assembly, produces three proproteins that are cleaved within the vitelline membrane layer to multiple derivatives. The different spatial distributions of the cleaved derivatives suggest that they play distinct roles in eggshell assembly. Using extant dec-1 mutations in conjunction with genetically engineered dec-1 transgenes, we show that, although all three dec-1 proproteins, fc106, fc125, and fc177, are required for female fertility, gross morphological abnormalities in the eggshell are observed only in the absence of fc177. The coalescence of the roof, pillar, and floor substructures of the tripartite endochorion suggested that quantitatively minor fc177 derivatives are necessary to prevent ectopic aggregation of endochorion proteins during the assembly process. Expression of a fc177 cDNA in dec-1 null mutants was sufficient to restore spaces within the endochorion layer. Fc177 may function as a scaffolding protein akin to those utilized in viral morphogenesis.  相似文献   

12.
Spangenberg DK  Waring GL 《Genetics》2007,177(3):1595-1608
The Drosophila dec-1 gene produces three proproteins required for female fertility and eggshell assembly. The three proproteins are distinguished by their C termini. Fc106, the most abundant proprotein, is cleaved within the vitelline membrane to three mature derivatives in a developmentally regulated manner. To define sequences within fc106 that are critical for its function, we created wild-type and mutant versions of an fc106 cDNA transgene. The functional consequences of the mutations were assessed in dec-14, a female-sterile splicing mutant that does not produce the fc106 isoform. The fertility of dec-14 females was restored by the introduction of either a wild-type transgene or a transgene bearing a C-terminal deletion that included fc106-specific sequences. Surprisingly, the removal of internal coding sequences created an aberrant DEC-1 proprotein that induced female sterility when introduced into wild-type flies. Dominant female sterility was not associated with larger deletions that included the fc106 N terminus, suggesting that abnormal juxtaposition of N- and C-terminal sequences in the aberrant proprotein interfered with endogenous DEC-1 proteins. Changes in the fractionation behavior of the endogenous fc106 C-terminal derivative, s60, and morphological changes in the endochorion in response to expression of the aberrant proprotein support this interpretation.  相似文献   

13.
Summary

In Fasciola gigantica, vitelline cells are the major contributors to the formation of the eggshell. The vitelline cells develop in vitelline follicles that are located in the posterior third of the adult parasite's body, in the areas lateral to the uterus and the testis. Mature vitelline cells are released and transported to the Mehlis' gland-ootype complex via a series of vitelline ducts. Based on ultrastructural features, the developing vitelline cells are classified into four stages: stem cell, protein-synthetic, carbohydrate-synthetic and mature cell stages. At the protein-synthetic stage, the eggshell globules are formed, whereas during the carbohydrate-synthetic stage glycogen particles and glycan vesicles are synthesized. The mature vitelline cells are detached from the nurse cells, and pass successively into the intrafollicular, interfollicular, longitudinal and transverse vitelline ducts, to be stored in the vitelline reservoir before being transported to the ootype via the median vitelline duct. At the same time, ova are transported from the ovary through the oviduct into the ootype lumen where each becomes surrounded by a number of vitelline cells. Vitelline cells secrete eggshell globules to surround a group of vitelline cells and an ovum in the ootype lumen, and these globules coalesce into the definitive eggshell. In the middle part of the uterus fertilization occurs, after which the eggshell is completely formed. Within the egg proper, vitelline cells break down, releasing glycogen and other products to nourish the developing embryo.  相似文献   

14.
The Drosophila eggshell is a specialised extracellular matrix (ECM) that surrounds and protects the oocyte and the embryo until its eclosion. In addition, the vitelline membrane, the innermost layer of the eggshell, holds the local determinant required to activate the Torso RTK pathway, which establishes the embryonic terminal regions. Here we report the identification and characterisation of closca, a gene encoding a new member of a group of proteins that act non-redundantly in vitelline membrane biogenesis and in Torso signalling. We also show that the Nasrat protein, another member of this group, is incorporated into the vitelline membrane, thereby indicating that the eggshell is a shared ECM that receives contributions from both follicle cells and the germline. This observation also provides a new scenario that accounts for the long known contribution of germline products to vitelline membrane biogenesis and to the follicle cell-dependent activation of the Torso receptor.  相似文献   

15.
Four genes expressed during the period of vitelline membrane formation are clustered within 8 kb of DNA in region 26A of the second chromosome. Temporal and quantitative difference in the profiles of accumulated RNA suggest that the genes are independently regulated although they are selectively expressed during the stages of vitelline membrane biosynthesis. In situ hybridization and S1 analyses of RNAs from fractionated eggchambers established that these genes are active only in the follicle cells. S1 mapping with in vitro synthesized RNA probes shows that three of the genes are tandemly oriented. All four appear to be intronless. In vitro translation products from hybrid-selected RNAs indicate that two of these genes code for major vitelline membrane proteins. Sequence analysis of these two genes support this conclusion. The cell- and stage-specific expression of the other two genes, encoding less abundant RNAs, suggests that they also play a role in early eggshell production.  相似文献   

16.
The patterning of embryos in early stages is a critical process for embryo development. In order to understand the molecular mechanism of early embryogenesis in silkworm, 2-DE combined with MALDI-TOF-MS technologies were used to analyze the proteins from diapause-destined eggs at the germ-band formation stage. From over 1000 spots, 93 were selected for analysis and data were obtained from 59 revealing 42 proteins. Gene Ontology annotation showed these proteins were involved in several biological processes at the germ-band formation stage, including cell stress response and protein folding, cell growth and migration, termination of diapause, and nutrition storage. Prominent among them was a new 80 kDa protein, named Bombyx mori egg protein 80 (BmEP80). BmEP80 was a component of the eggshell which was secreted by follicle cells during the late vitellogenesis stage to early choriogenesis stage (FCs −5 to +10). It disappears during early embryogenesis and RNAi against it resulted in the collapse of eggs, thus it is likely that BmEP80 is a new component of the silkworm vitelline membrane.  相似文献   

17.
18.
During stages 9 and 10 of oogenesis in Drosophila the major proteins involved in vitelline membrane (VM) formation are synthesized and secreted by the somatic follicle cells surrounding the oocyte. To identify potential mRNAs involved in VM protein synthesis, newly synthesized poly(A)-containing RNA from egg chambers of different developmental stages was studied. Urea-agarose gel electrophoresis revealed two RNA bands in stage 10 egg chambers in the size range expected for those which encode the smaller VM proteins. These RNA bands, T1 and T2, are specifically enriched in stage 10 follicle cell preparations. In vitro translations in reticulocyte lysates in the absence and presence of microsomal membranes showed both RNA bands code for products that are synthesized in precursor forms which are processed to species that comigrate with VM proteins. T2 directed the synthesis of processed species that comigrated with the 23- to 24-kDa and 17.5-kDa VM proteins (J. Fargnoli and G. L. Waring, 1982, Dev. Biol. 92, 306–314) while the T1 translation product comigrated with the 14-kDa protein. To determine the cytogenetic location of the genes encoding T1 and T2 RNAs, radiolabeled T1 and T2 RNAs were hybridized in situ to salivary gland chromosomes. The results suggest that the structural genes coding for the small vitelline membrane proteins are localized at two sites on the second chromosome: 39DE and 42A.  相似文献   

19.
The developmental aspects of the Leptinotarsa decemlineata crystalline chorionic layer (CCL) morphogenesis, its composition and its supramolecular structure were studied. The mature Leptinotarsa decemlineata eggshell consists of the vitelline membrane and the CCL, while the follicle cell remnants following their degeneration after oogenesis completion constitute the outer chorionic layer. The vitelline membrane and the CCL layers are formed through continuous material deposition from the follicular epithelium, whereas the main morphogenic factor during most insect eggshell formation, namely the follicle cell and oocyte microvilli, are seemingly involved only in vitelline membrane formation. Analysis of the CCL morphogenesis showed that this layer is assembled from a fiber-like pre-crystalline material, which accumulates at the vitelline membrane-follicle cell interface. The mature CCL is about 1 microm thick and exhibits a periodicity of approximately 10 nm, while computer image analysis studies of thin-sectioned CCL revealed the existence of crystalline layers parallel to the CCL surface. Finally, SDS-PAGE-electrophoresis of purified CCLs showed that this crystalline layer is of a proteinaceous nature and is most likely composed of 3-5 polypeptides with a molecular weight ranging in between 28-60 kDa. Overall, these data exemplify for the first time the nature and supramolecular arrangement of a crystalline layer and its constituent molecules in Coleoptera.  相似文献   

20.
The vitelline membrane (VM), the oocyte proximal layer of the Drosophila eggshell, contains four major proteins (VMPs) that possess a highly conserved “VM domain” which includes three precisely spaced, evolutionarily conserved, cysteines (CX7CX8C). Focusing on sV23, this study showed that the three cysteines are not functionally equivalent. While substitution mutations at the first (C123S) or third (C140S) cysteines were tolerated, females with a substitution at the second position (C131S) were sterile. Fractionation studies showed that sV23 incorporates into a large disulfide linked network well after its secretion ceases, suggesting that post-depositional mechanisms are in place to restrict disulfide bond formation until late oogenesis, when the oocyte no longer experiences large volume increases. Affinity chromatography utilizing histidine tagged sV23 alleles revealed small sV23 disulfide linked complexes during the early stages of eggshell formation that included other VMPs, namely sV17 and Vml. The early presence but late loss of these associations in an sV23 double cysteine mutant suggests that reorganization of disulfide bonds may underlie the regulated growth of disulfide linked networks in the vitelline membrane. Found within the context of a putative thioredoxin active site (CXXS) C131, the critical cysteine in sV23, may play an important enzymatic role in isomerizing intermolecular disulfide bonds during eggshell assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号