首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Major histocompatibility complex (MHC) class I genes have complicated and profound evolutionary histories. To reconstruct and better understand their histories, partial class I genes (exon 2–intron 2–exon 3) were sequenced in a sampling of prosimians (Strepsirhini, Primates). In total, we detected 117 different sequences from 36 Malagasy prosimians (lemurs) and 1 non-Malagasy prosimian (galago) representing 4 families, 7 genera, and 13 species. Unlike the MHC class II genes (MHC-DRB), MHC class I genes show a generally genus-specific mode of evolution in lemurs. Additionally, no prosimian class I loci were found to be orthologous to HLA genes, even at highly conserved loci (such as HLA-E, HLA-F). Phylogenetic analysis indicates that nucleotide diversity among loci was very small and the persistence time of the polymorphisms was short, suggesting that the origin of the lemur MHC class I genes detected in this study was relatively recent. The evolutionary mode of these genes is similar to that of classic HLA genes, HLA-A, HLA-B, and HLA-C, in terms of their recent origin and rarity of pseudogenes, and differs from them with respect to the degree of gene duplications. From the viewpoint of MHC genes evolution, some interlocus sequence exchanges were apparently observed in the lemur lineage upon phylogenetic and amino acid motif analyses. This is also in contrast to the evolutionary mode of HLA genes, where intralocus exchanges have certainly occurred but few interlocus exchanges have taken place. Consequently, the gene conversion model for explaining the generation of the MHC diversity among different loci can be thought to play more important roles in the evolution of lemur MHC class I genes than in that of HLA genes.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

2.
For many genes, ray-finned fish (Actinopterygii) have two paralogous copies, where only one ortholog is present in tetrapods. The discovery of an additional, almost-complete set of Hox clusters in teleosts (zebrafish, pufferfish, medaka, and cichlid) but not in basal actinopterygian lineages (Polypterus) led to the formulation of the fish-specific genome duplication hypothesis. The phylogenetic timing of this genome duplication during the evolution of ray-finned fish is unknown, since only a few species of basal fish lineages have been investigated so far. In this study, three nuclear genes (fzd8, sox11, tyrosinase) were sequenced from sturgeons (Acipenseriformes), gars (Semionotiformes), bony tongues (Osteoglossomorpha), and a tenpounder (Elopomorpha). For these three genes, two copies have been described previously teleosts (e.g., zebrafish, pufferfish), but only one orthologous copy is found in tetrapods. Individual gene trees for these three genes and a concatenated dataset support the hypothesis that the fish-specific genome duplication event took place after the split of the Acipenseriformes and the Semionotiformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. If these three genes were duplicated during the proposed fish-specific genome duplication event, then this event separates the species-poor early-branching lineages from the species-rich teleost lineage. The additional number of genes resulting from this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish.[Reviewing Editor: Martin Kreitman]  相似文献   

3.
The presence of two sets of paired appendages is one of the defining features of jawed vertebrates. We are interested in identifying genetic systems that could have been responsible for the origin of the first set of such appendages, for their subsequent duplication at a different axial level, and/or for the generation of their distinct identities. It has been hypothesized that four genes of the T-box gene family (Tbx2Tbx5) played important roles in the course of vertebrate limb evolution. To test this idea, we characterized the orthologs of tetrapod limb-expressed T-box genes from a teleost, Danio rerio. Here we report isolation of three of these genes, tbx2, tbx4, and tbx5. We found that their expression patterns are remarkably similar to those of their tetrapod counterparts. In particular, expression of tbx5 and tbx4 is restricted to pectoral and pelvic fin buds, respectively, while tbx2 can be detected at the anterior and posterior margins of the outgrowing fin buds. This, in combination with conserved expression patterns in other tissues, suggests that the last common ancestor of teleosts and tetrapods possessed all four of these limb-expressed T-box genes (Tbx2Tbx5), and that these genes had already acquired, and have subsequently maintained, their gene-specific functions. Furthermore, this evidence provides molecular support for the notion that teleost pectoral and pelvic fins and tetrapod fore- and hindlimbs, respectively, are homologous structures, as suggested by comparative morphological analyses. Received: 14 July 1999 / Accepted: 4 September 1999  相似文献   

4.
Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural‐crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole‐genome duplication that occurred 320–350 million years ago at the base of the teleost lineage, the so‐called fish‐specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity.  相似文献   

5.

Background  

In recent years, the relaxin family of signaling molecules has been shown to play diverse roles in mammalian physiology, but little is known about its diversity or physiology in teleosts, an infraclass of the bony fishes comprising ~ 50% of all extant vertebrates. In this paper, 32 relaxin family sequences were obtained by searching genomic and cDNA databases from eight teleost species; phylogenetic, molecular evolutionary, and syntenic data analyses were conducted to understand the relationship and differential patterns of evolution of relaxin family genes in teleosts compared with mammals. Additionally, real-time quantitative PCR was used to confirm and assess the tissues of expression of five relaxin family genes in Danio rerio and in situ hybridization used to assess the site-specific expression of the insulin 3-like gene in D. rerio testis.  相似文献   

6.
Follistatin (Fst) inhibits transforming growth factor-β (TGF-B) proteins and is a known regulator of amniote myogenesis. Here, we used phylogenetic, genomic and experimental approaches to study its evolution in teleosts. Phylogenetic analyses suggested that one fst gene (fst1) is common to euteleosts, but a second gene (fst2) is conserved specifically within the Ostariophysi. Zebrafish fst1/2 respectively appear on chromosomes 5 and 10 in two genomic regions, each with conserved synteny to a single region in tetrapods. Interestingly, other teleosts have two corresponding chromosomal regions with a similar repertoire of paralogues. Phylogenetic reconstruction clustered these gene duplicates into two sister clades branching from tetrapod sequences. We suggest that an ancestral fst-containing chromosome was duplicated during the teleost whole genome duplication, but that fst2 was lost in lineages external to the Ostariophysi. We show that Fst1 of teleosts/mammals has evolved under strong purifying selection, but the N-terminal of Fst2 may have evolved under positive selection. Furthermore, the tissue-specific expression of zebrafish fst2 was restricted to fewer tissues compared to its paralogue and the single fst1 orthologue of Atlantic salmon (Salmo salar). Zebrafish fst1/2 may have subfunctionalized relative to non-duplicated vertebrate lineages, as several regions in the fst promoter of tetrapods were conserved with one paralogue, but not both. Finally, we examined the embryonic expression of fst1 in a teleost outside the Ostariophysi (Atlantic salmon). During segmentation, fst1 was expressed in the anterior somite compartment but was excluded from muscle progenitors that strongly expressed myogenic regulatory factors (MRFs). Later, fst1 was expressed in myogenic progenitors of the pectoral fin buds and also within the pax7 + cell layer external to the myotome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Whole-genome duplication (WGD) is believed to be one of the major evolutionary events that shaped the genome organization of vertebrates. Here, we review recent research on vertebrate genome evolution, specifically on WGD and its consequences for gene and genome evolution in teleost fishes. Recent genome analyses confirmed that all vertebrates experienced two rounds of WGD early in their evolution, and that teleosts experienced a subsequent additional third-round (3R)-WGD. The 3R-WGD was estimated to have occurred 320–400 million years ago in a teleost ancestor, but after its divergence from a common ancestor with living non-teleost actinopterygians (Bichir, Sturgeon, Bowfin, and Gar) based on the analyses of teleost-specific duplicate genes. This 3R-WGD was confirmed by synteny analysis and ancestral karyotype inference using the genome sequences of Tetraodon and medaka. Most of the tetrapods, on the other hand, have not experienced an additional WGD; however, they have experienced repeated chromosomal rearrangements throughout the whole genome. Therefore, different types of chromosomal events have characterized the genomes of teleosts and tetrapods, respectively. The 3R-WGD is useful to investigate the consequences of WGD because it is an evolutionarily recent WGD and thus teleost genomes retain many more WGD-derived duplicates and “traces” of their evolution. In addition, the remarkable morphological, physiological, and ecological diversity of teleosts may facilitate understanding of macrophenotypic evolution on the basis of genetic/genomic information. We highlight the teleosts with 3R-WGD as unique models for future studies on ecology and evolution taking advantage of emerging genomics technologies and systems biology environments.  相似文献   

8.
9.
The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O‐acyltransferase (GOAT) or membrane‐bound O‐acyltransferase domain‐containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS‐R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS‐R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single‐gene locus in all vertebrate species, and accordingly, a single GHS‐R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS‐R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS‐R isoforms were identified in teleost genomes. This diversification of GHS‐R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS‐R but not the ghrelin gene. The identification of the GHS‐R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure–function relationships of the ghrelin/GHS‐R system.  相似文献   

10.
Members of the protein phosphatase 2C (PP2C) superfamily are Mg2+/Mn2+-dependent serine/threonine phosphatases, which are essential for regulation of cell cycle and stress signaling pathways in cells. In this study, a comprehensive genomic analysis of all available metazoan PP2C sequences was conducted. The phylogeny of PP2C was reconstructed, revealing the existence of 15 vertebrate families which arose following a series of gene duplication events. Relative dating of these duplications showed that they occurred in two active periods: before the divergence of bilaterians and before vertebrate diversification. PP2C families which duplicated during the first period take part in different signaling pathways, whereas PP2C families which diverged in the second period display tissue expression differences yet participate in similar signaling pathways. These differences were found to involve variation of expression in tissues which show higher complexity in vertebrates, such as skeletal muscle and the nervous system. Further analysis was performed with the aim of identifying the functional domains of PP2C. The conservation pattern across the entire PP2C superfamily revealed an extensive domain of more than 50 amino acids which is highly conserved throughout all PP2C members. Several insertion or deletion events were found which may have led to the specialization of each PP2C family. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Hector Musto]  相似文献   

11.
The trace amine-associated receptors (TAARs) form a specific family of G protein-coupled receptors in vertebrates. TAARs were initially considered neurotransmitter receptors, but recent study showed that mouse TAARs function as chemosensory receptors in the olfactory epithelium. To clarify the evolutionary dynamics of the TAAR gene family in vertebrates, near-complete repertoires of TAAR genes and pseudogenes were identified from the genomic assemblies of 4 teleost fishes (zebrafish, fugu, stickleback, and medaka), western clawed frogs, chickens, 3 mammals (humans, mice, and opossum), and sea lampreys. Database searches revealed that fishes had many putatively functional TAAR genes (13-109 genes), whereas relatively small numbers of TAAR genes (3-22 genes) were identified in tetrapods. Phylogenetic analysis of these genes indicated that the TAAR gene family was subdivided into 5 subfamilies that diverged before the divergence of ray-finned fishes and tetrapods. In tetrapods, virtually all TAAR genes were located in 1 specific region of their genomes as a gene cluster; however, in fishes, TAAR genes were scattered throughout more than 2 genomic locations. This possibly reflects a whole-genome duplication that occurred in the common ancestor of ray-finned fishes. Expression analysis of zebrafish and stickleback TAAR genes revealed that many TAARs in these fishes were expressed in the olfactory organ, suggesting the relatively high importance of TAARs as chemosensory receptors in fishes. A possible evolutionary history of the vertebrate TAAR gene family was inferred from the phylogenetic and comparative genomic analyses.  相似文献   

12.
Structural and functional evolution of three cardiac natriuretic peptides   总被引:1,自引:0,他引:1  
Natriuretic peptides (NPs) are a group of hormones playing important roles in cardiovascular and osmoregulatory systems in vertebrates. Among the NP subtypes, atrial NP (ANP), B-type NP (BNP), and ventricular NP (VNP) are circulating hormones expressed exclusively in the heart (cardiac NPs). The constitution of cardiac NPs is variable among species of vertebrates. In order to understand the evolutionary and functional significance of such variation, we performed a systematic survey of cardiac NP cDNAs in nine taxonomically diverse teleosts inhabiting environments of varying salinity. The discovery of the coexistence of the ANP, BNP, and VNP genes in the eel and rainbow trout suggested that the ancestral teleost had all three cardiac NPs. As the VNP cDNA was undetectable in ayu and six species of Neoteleostei, it is possible that VNP was lost before the divergence of Osmeroidei. The ANP gene was also undetectable in the medaka. Thus, only the BNP gene is universal in species examined in the present study. Synthetic medaka BNP preferentially activated two medaka GC-A-type receptors, suggesting that the three cardiac NPs share the same receptor. However, the regulation of BNP expression may be the most strict because ATTTA repeats in the 3'-untranslated region and the dibasic motif in the ring are conserved among teleosts and tetrapods. Linkage analyses in the rainbow trout located ANP, BNP, and VNP genes on the same chromosome, which suggested the generation of the VNP gene by tandem duplication as observed with ANP and BNP genes. If the duplication occurred before the divergence of tetrapods and teleosts, VNP may exist in the tetrapod lineage.  相似文献   

13.
14.
Accumulating evidence for alternative gene orders demonstrates that vertebrate mitochondrial genomes are more evolutionarily dynamic than previously thought. Several lineages of parthenogenetic lizards contain large, tandem duplications that include rRNA, tRNA, and protein-coding genes, as well as the control region. Such duplications are hypothesized as intermediate stages in gene rearrangement, but the early stages of their evolution have not been previously studied. To better understand the evolutionary dynamics of duplicated segments of mitochondrial DNA, we sequenced 10 mitochondrial genomes from recently formed ( approximately 300,000 years ago) hybrid parthenogenetic geckos of the Heteronotia binoei complex and 1 from a sexual form. These genomes included some with an arrangement typical of vertebrates and others with tandem duplications varying in size from 5.7 to 9.4 kb, each with different gene contents and duplication endpoints. These results, together with phylogenetic analyses, indicate independent and frequent origins of the duplications. Small, direct repeats at the duplication endpoints imply slipped-strand error as a mechanism generating the duplications as opposed to a false initiation/termination of DNA replication mechanism that has been invoked to explain duplications in other lizard mitochondrial systems. Despite their recent origin, there is evidence for nonfunctionalization of genes due primarily to deletions, and the observed pattern of gene disruption supports the duplication-deletion model for rearrangement of mtDNA gene order. Conversely, the accumulation of mutations between these recent duplicates provides no evidence for gene conversion, as has been reported in some other systems. These results demonstrate that, despite their long-term stasis in gene content and arrangement in some lineages, vertebrate mitochondrial genomes can be evolutionary dynamic even at short timescales.  相似文献   

15.
Duplicated genes produce genetic variation that can influence the evolution of genomes and phenotypes. In most cases, for a duplicated gene to contribute to evolutionary novelty it must survive the early stages of divergence from its paralog without becoming a pseudogene. I examined the evolutionary dynamics of recently duplicated genes in the Drosophila pseudoobscura genome to understand the factors affecting these early stages of evolution. Paralogs located in closer proximity have higher sequence identity. This suggests that gene conversion occurs more often between duplications in close proximity or that there is more genetic independence between distant paralogs. Partially duplicated genes have a higher likelihood of pseudogenization than completely duplicated genes, but no single factor significantly contributes to the selective constraints on a completely duplicated gene. However, DNA-based duplications and duplications within chromosome arms tend to produce longer duplication tracts than retroposed and inter-arm duplications, and longer duplication tracts are more likely to contain a completely duplicated gene. Therefore, the relative position of paralogs and the mechanism of duplication indirectly affect whether a duplicated gene is retained or pseudogenized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Considerable evidence suggests that one genome duplication event preceded the divergence of teleost fishes and a second genome duplication event occurred before the radiation of teleosts of the family Salmonidae. Two Sox9 genes have been isolated from a number of teleosts and are called Sox9a and Sox9b. Two Sox9 gene copies have also been isolated from rainbow trout, a salmonid fish and are called Sox9 and Sox9α2. Previous evaluations of the evolutionary history of rainbow trout Sox9 gene copies using phylogenetic reconstructions of their coding regions indicated that they both belong to the Sox9b clade. In this study, we determine the true evolutionary history of Sox9 gene copies in rainbow trout. We show that the locus referred to as Sox9 in rainbow trout is itself duplicated. Mapping of the duplicated Sox9 gene copies indicates that they are co-orthologs of Sox9b while mapping of Sox9α2 indicates that it is an ortholog of Sox9a. This relationship is supported by phylogenetic reconstruction of Sox9 gene copies in teleosts using their 3′ untranslated regions. The conflicting phylogenetic topology of Sox9 genes in rainbow trout indicates the occurrence of gene conversion events between Sox9 and Sox9α2 which is supported by a number of recombination analyses.  相似文献   

17.
The occurrence of a fish-specific genome duplication (FSGD) in the lineage leading to teleost fishes is widely accepted, but the consequences of this event remain elusive. Teleosts, and the cichlid fishes from the species flocks in the East African Great Lakes in particular, evolved a unique complexity and diversity of body coloration and color patterning. Several genes involved in pigment cell development have been retained in duplicate copies in the teleost genome after the FSGD. Here we investigate the evolutionary fate of one of these genes, the type III receptor tyrosine kinase (RTK) colony-stimulating factor 1 receptor (csf1r). We isolated and shotgun sequenced two paralogous csf1r genes from a bacterial artificial chromosome library of the cichlid fish Astatotilapia burtoni that are both linked to paralogs of the pdgfr beta gene, another type III RTK. Two pdgfr beta-csf1r paralogons were also identified in the genomes of pufferfishes and medaka, and our phylogenetic analyses suggest that the pdgfr beta-csf1r locus was duplicated during the course of the FSGD. Comparisons of teleosts and tetrapods suggest asymmetrical divergence at different levels of genomic organization between the teleost-specific pdgfr beta-csf1r paralogons, which seem to have evolved as coevolutionary units. The high-evolutionary rate in the teleost B-paralogon, consisting of csf1rb and pdgfr betab, further suggests neofunctionalization by functional divergence of the extracellular, ligand-binding region of these cell-surface receptors. Finally, we hypothesize that genome duplications and the associated expansion of the RTK family might be causally linked to the evolution of coloration in vertebrates and teleost fishes in particular.  相似文献   

18.
Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations.  相似文献   

19.
We examined the genomic organization of Hox genes in rainbow trout (Oncorhynchus mykiss), a tetraploid teleost derivative species, in order to test models of presumptive genomic duplications during vertebrate evolution. Thirteen putative clusters were localized in the current rainbow trout genetic map; however, analysis of the sequence data suggests the presence of at least 14 Hox clusters. Many duplicated genes appear to have been retained in the genome and share a high percentage of amino acid similarity with one another. We characterized two Hox genes located within the HoxCb cluster that may have been lost independently in other teleost species studied to date. Finally, we identified conserved syntenic blocks between salmonids and human, and provide data supporting two new linkage group homeologies (i.e., RT-3/16, RT-12/29) and three previously described homeologies (RT-2/9, RT-17/22, and RT-27/31) in rainbow trout. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. The sequence data for this study have been submitted to GenBank under the following accession numbers: AY567792, AY567793, AY567794, AY567795, AY567796, AY567797, AY567798, AY567799, AY567800, AY567801, AY567802, AY567803, AY567804, AY567805, AY567806, AY567807, AY567808, AY567809, AY567810, AY567812, AY567813, AY567814, AY567815, AY567816, and AY567817. [Reviewing Editor : Dr. Axel Meyer]  相似文献   

20.
The chaperonins, GroEL and GroES, are present ubiquitously and provide a paradigm in the understanding of assisted protein folding. Due to its essentiality of function, GroEL exhibits high sequence conservation across species. Complete genome sequencing has shown the occurrence of duplicate or multiple copies of groEL genes in bacteria such as Mycobacterium tuberculosis and Corynebacterium glutamicum. Monophyly of each bacterial clade in the phylogenetic tree generated for the GroEL protein suggests a lineage-specific duplication. The duplicated groEL gene in Actinobacteria is not accompanied by the operonic groES despite the presence of upstream regulatory elements. Our analysis suggests that in these bacteria the duplicated groEL genes have undergone rapid evolution and divergence to function in a GroES-independent manner. Evaluation of multiple sequence alignment demonstrates that the duplicated genes have acquired mutations at functionally significant positions including those involved in substrate binding, ATP binding, and GroES binding and those involved in inter-ring and intra-ring interactions. We propose that the duplicate groEL genes in different bacterial clades have evolved independently to meet specific requirements of each clade. We also propose that the groEL gene, although essential and conserved, accumulates nonconservative substitutions to exhibit structural and functional variations. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号