首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
4.
5.
 We report on a new zebrafish T-box-containing gene, tbx16. It encodes a message that is first detected throughout the blastoderm soon after the initiation of zygotic gene expression. Following gastrulation, expression becomes restricted to paraxial mesoderm and later primarily to the developing tail bud. To gain an evolutionary prospective on the potential function of this gene, we have analyzed its phylogenetic relationships to known T-box genes from other species. Zebrafish tbx16 is likely orthologous to the chicken Tbx6L and Xenopus Xombi/Antipodean/Brat/VegT genes. Our analysis also shows that zebrafish tbx6 and mouse Tbx6 genes are paralogous to zebrafish tbx16. We present evidence which argues, that despite the same name and similar expression, zebrafish tbx6 and mouse Tbx6 genes are not orthologous to each other but instead represent relatively distant paralogs. The expression patterns of all genes are discussed in the light of their evolutionary relationships. Received: 27 November 1997 / Accepted: 27 January 1998  相似文献   

6.
Ahn D  Ho RK 《Developmental biology》2008,322(1):220-233
During development of the limbs, Hox genes belonging to the paralogous groups 9-13 are expressed in three distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which have a very different organization in their fin skeletons, it is not clear whether a similar patterning mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during teleost paired fin development, we re-analyzed the expression patterns of hox9-13 genes during development of pectoral fins in zebrafish. We found that, similar to tetrapod Hox genes, expression of hoxa/d genes in zebrafish pectoral fins occurs in three distinct phases, in which the most distal/third phase is correlated with the development of the most distal structure of the fin, the fin blade. Like in tetrapods, hox gene expression in zebrafish pectoral fins during the distal/third phase is dependent upon sonic hedgehog signaling (hoxa and hoxd genes) and the presence of a long-range enhancer (hoxa genes), which indicates that the regulatory mechanisms underlying tri-phasic expression of Hox genes have remained relatively unchanged during evolution. Our results suggest that, although simpler in organization, teleost fins do have a distal structure that might be considered comparable to the autopod region of limbs.  相似文献   

7.
Paired appendages were a key developmental innovation among vertebrates and they eventually evolved into limbs. Ancient developmental control systems for paired fins and limbs are broadly conserved among gnathostome vertebrates. Some lineages including whales, some salamanders, snakes, and many ray-fin fish, independently lost the pectoral, pelvic, or both appendages over evolutionary time. When different taxa independently evolve similar developmental morphologies, do they use the same molecular genetic mechanisms? To determine the developmental genetic basis for the evolution of pelvis loss in the pufferfish Takifugu rubripes (fugu), we isolated fugu orthologs of genes thought to be essential for limb development in tetrapods, including limb positioning (Hoxc6, Hoxd9), limb bud initiation (Pitx1, Tbx4, Tbx5), and limb bud outgrowth (Shh, Fgf10), and studied their expression patterns during fugu development. Results showed that bud outgrowth and initiation fail to occur in fugu, and that pelvis loss is associated with altered expression of Hoxd9a, which we show to be a marker for pelvic fin position in three-spine stickleback Gasterosteus aculeatus. These results rule out changes in appendage outgrowth and initiation genes as the earliest developmental defect in pufferfish pelvic fin loss and suggest that altered Hoxd9a expression in the lateral mesoderm may account for pelvis loss in fugu. This mechanism appears to be different from the mechanism for pelvic loss in stickleback, showing that different taxa can evolve similar phenotypes by different mechanisms.  相似文献   

8.
9.
We identified a novel secreted protein, fibin, in zebrafish, mice and humans. We inhibited its function in zebrafish embryos by injecting antisense fibin morpholino oligonucleotides. A knockdown of fibin function in zebrafish resulted in no pectoral fin bud initiation and abolished the expression of tbx5, which is involved in the specification of pectoral fin identification. The lack of pectoral fins in fibin-knockdown embryos was partially rescued by injection of fibin RNA. fibin was expressed in the lateral plate mesoderm of the presumptive pectoral fin bud regions. Its expression region was adjacent to that of tbx5. fibin expression temporally preceded tbx5 expression in presumptive pectoral fin bud regions, and not abolished in tbx5-knockdown presumptive fin bud regions. In contrast, fibin expression was abolished in retinoic acid signaling-inhibited or wnt2b-knockdown presumptive fin bud regions. These results indicate that fibin is a secreted signal essential for pectoral fin bud initiation in that it potentially acts downstream of retinoic acid and wnt signaling and is essential for tbx5 expression. The present findings have revealed a novel secreted lateral plate mesoderm signal essential for fin initiation in the lateral plate mesoderm.  相似文献   

10.
WNTs are secreted signaling molecules which control cell differentiation and proliferation. They are known to play essential roles in various developmental processes. Wnt genes have been identified in a variety of animals, and it has been shown that their amino acid sequences are highly conserved throughout evolution. To investigate the role of wnt genes during fish development from the evolutionary viewpoint, six medaka wnt genes (wnt4, wnt5a, wnt6, wnt7b, wnt8b and wnt8-like) were isolated and their embryonic expression was examined. These wnt genes were expressed in various tissues during embryonic development, and most of their expression patterns were conserved or comparable to those of other vertebrates. Thus, these wnt genes may be useful as molecular markers to investigate development and organogenesis using the medaka. Focus was on wnt5a, which was expressed in the pectoral fin buds, because its expression pattern was particularly comparable to that in tetrapod limbs. Its detailed expression pattern was further examined during pectoral fin bud development. The conservation and diversification of Wnt5a expression through the evolutionary transition from fish fins to tetrapod limbs is discussed.  相似文献   

11.
The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.  相似文献   

12.
13.
14.
15.
16.
17.
Polarized expression of the Sonic hedgehog (Shh) gene in the posterior mesenchyme is essential for pattern formation in the appendages of higher vertebrates, from teleost fins to tetrapod limb buds. We report on a sequence in intron 5 of the Lmbr1 gene, which resides approximately 1 Mb from the Shh coding region in the mouse genome and is highly conserved among teleost fishes and throughout the tetrapod lineage. Positional cloning revealed that two mouse mutations, Hx and M100081, characterized by mirror-image digit duplication and ectopic anterior Shh expression, have base substitutions in this sequence. Absence of the conserved sequence in limbless reptiles and amphibians and a cis-trans test using the Hx and Shh KO alleles suggest that the sequence is a cis-acting regulator that controls the polarized expression of Shh. The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession number: AB092986 to AB093004, AB093207, and AB114903.  相似文献   

18.
Tetrapods evolved from within the lobe‐finned fishes around 370 Ma. The evolution of limbs from lobe‐fins entailed a major reorganization of the skeletal and muscular anatomy of appendages in early tetrapods. Concurrently, a degree of similarity between pectoral and pelvic appendages also evolved. Here, we compared the anatomy of appendages in extant lobe‐finned fishes (Latimeria and Neoceratodus) and anatomically plesiomorphic amphibians (Ambystoma, Salamandra) and amniotes (Sphenodon) to trace and reconstruct the musculoskeletal changes that took place during the fins‐to‐limbs transition. We quantified the anatomy of appendages using network analysis. First, we built network models—in which nodes represent bones and muscles, and links represent their anatomical connections—and then we measured network parameters related to their anatomical integration, heterogeneity, and modularity. Our results reveal an evolutionary transition toward less integrated, more modular appendages. We interpret this transition as a diversification of muscle functions in tetrapods compared to lobe‐finned fishes. Limbs and lobe‐fins show also a greater similarity between their pectoral and pelvic appendages than ray‐fins do. These findings on extant species provide a basis for future quantitative and comprehensive reconstructions of the anatomy of limbs in early tetrapod fossils, and a way to better understand the fins‐to‐limbs transition.  相似文献   

19.
《Genomics》2019,111(6):1351-1359
We characterized the Andrias davidianus T-box 1 (Tbx1) gene. Tbx1 expression was high in testis and low in other examined tissues. Immunohistochemistry detected tbx1 expression in somatic and germ cells 62 days post-hatching (dph), prior to gonad differentiation. At 210 dph, after gonad differentiation, tbx1 was expressed in spermatogonia and testis somatic cells and in granulosa cells in ovary. Tbx1 expression was up-regulated in ovary after high temperature treatment. In the neomale, tbx1 expression showed a similar profile to normal males, and vice-versa for genetic male. Over-expression of tbx1 in females after injection of TBX1 protein down-regulated the female-biased genes cyp19a and foxl2 and up-regulated the male-biased amh gene. When tbx1 was knocked down by tbx1/siRNA, cyp19a and foxl2 expression was up-regulated, and expression of amh, cyp26a, dmrt1, and wt1 was down-regulated. Results suggest that tbx1 influenced sex-related gene expression and participates in regulation of A. davidianus testis development.  相似文献   

20.
Zhang H  Fan CX  Song JK 《动物学研究》2012,33(2):158-164
Tbx3基因是一类重要的转录因子,在形态发生和器官形成中发挥着重要作用。该文克隆了西伯利亚鲟Tbx3基因(AbTbx3)cDNA的全长序列,该cDNA全长2908bp,包含一个2166bp的开放阅读框,编码721个氨基酸的多肽。分析表明:AbTbx3和人Tbx3的T-box结构域蛋白序列同源性达到95.2%,三维结构也具有高度的相似性。系统进化分析表明:AbTbx3与其他物种的Tbx3聚为一支,并在一个大的分支上与Tbx2聚类。半定量RT-PCR显示,AbTbx3基因从西伯利亚鲟囊胚早期即开始表达,且随着发育表达渐强,至尾芽早期表达量达到最大,随后稍有下降;在成体的眼、脑、鳃、肠、胸鳍和腹鳍中有表达,在肝、血液、心脏、肾和肌肉中均未检测到其表达。整体原位杂交表明,在37期和43期仔鱼的耳泡、后脑、松果体和后部脊索中表达量较高,同时在背鳍芽中也有表达。综上结果表明:西伯利亚鲟Tbx3与人Tbx3在结构上高度同源,在胚胎、仔鱼和成体中呈时空特异性表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号