首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Oh NS  Yoon SH  Lee WK  Choi JY  Min do S  Bae YS 《Gene》2007,386(1-2):147-153
CKII plays a significant role in cell proliferation and cell cycle control. In this report, yeast two-hybrid assay and pull-down assay demonstrate that CKBBP2/CRIF1 associates with the beta subunit of CKII in vitro and in vivo. Recombinant CKBBP2/CRIF1 is phosphorylated in vitro by purified CKII and by CKII inhibitor apigenin-sensitive protein kinase in HEK293 cell extract. Phosphoamino acid analysis and mutational analysis indicate that CKII phosphorylates serine at residue 221 within CKBBP2/CRIF1. Furthermore, serine to alanine mutation at residue 221 abrogates the phosphorylation of CKBBP2/CRIF1 observed in HEK293 cell extract, indicating that CKII is a major kinase that is responsible for phosphorylation of CKBBP2/CRIF1. As compared with the wild-type CKBBP2/CRIF1 or nonphosphorylatable mutant CKBBP2(S221A) (in which the serine-221 is replaced by alanine), overexpression of CKBBP2(S221E) in COS7 cells promotes cell proliferation. Taken together, the present results suggest that CKII may be involved in cell proliferation, at least in part, through the phosphorylation of serine-221 within CKBBP2/CRIF1.  相似文献   

2.
Protein kinase CKII (CKII) is required for progression through the cell division cycle. We recently reported that the beta subunit of protein kinase CKII (CKIIbeta) associates with CKBBP1 that contains the Ring-H2 finger motif in the yeast two-hybrid system. We demonstrate here that the Ring-H2 finger-disrupted mutant of CKBBP1 does not interact with purified CKIIbeta in vitro, which shows that the Ring-H2 finger motif is critical for direct interaction with CKIIbeta. The CKII holoenzyme is efficiently co-precipitated with the wild-type CKBBP1, but not with the Ring-H2 finger-disrupted CKBBP1, from whole cell extracts when epitope-tagged CKBBP1 is transiently expressed in HeLa cells. Disruption of the Ring-H2 finger motif does not affect the cellular localization of CKBBP1 in HeLa cells. The increased expression of either the wild-type CKBBP1 or Ring-H2 finger-disrupted CKBBP1 does not modulate the protein or the activity levels of CKII in HeLa cells. However, the stable expression of Ring-H2 finger-disrupted CKBBP1 in HeLa cells suppresses cell proliferation and causes the accumulation of the G1/G0 peak of the cell cycle. The Ring-H2 finger motif is required for maximal CKBBP1 phosphorylation by CKII, suggesting that the stable binding of CKBBP1 to CKII is necessary for its efficient phosphorylation. Taken together, these results suggest that the complex formation of CKIIbeta with CKBBP1 and/or CKII-mediated CKBBP1 phosphorylation is important for the G1/S phase transition of the cell cycle.  相似文献   

3.
The cyclin-dependent kinase inhibitor, p27(Kip1), which regulates cell cycle progression, is controlled by its subcellular localization and subsequent degradation. p27(Kip1) is phosphorylated on serine 10 (S10) and threonine 187 (T187). Although the role of T187 and its phosphorylation by Cdks is well-known, the kinase that phosphorylates S10 and its effect on cell proliferation has not been defined. Here, we identify the kinase responsible for S10 phosphorylation as human kinase interacting stathmin (hKIS) and show that it regulates cell cycle progression. hKIS is a nuclear protein that binds the C-terminal domain of p27(Kip1) and phosphorylates it on S10 in vitro and in vivo, promoting its nuclear export to the cytoplasm. hKIS is activated by mitogens during G(0)/G(1), and expression of hKIS overcomes growth arrest induced by p27(Kip1). Depletion of KIS using small interfering RNA (siRNA) inhibits S10 phosphorylation and enhances growth arrest. p27(-/-) cells treated with KIS siRNA grow and progress to S/G(2 )similar to control treated cells, implicating p27(Kip1) as the critical target for KIS. Through phosphorylation of p27(Kip1) on S10, hKIS regulates cell cycle progression in response to mitogens.  相似文献   

4.
The p42/p44 mitogen-activated protein (MAP) kinase is stimulated by various mitogenic stimuli, and its sustained activation is necessary for cell cycle G(1) progression and G(1)/S transition. G(1) progression and G(1)/S transition also depend on sequential cyclin-dependent kinase (CDK) activation. Here, we demonstrate that MAP kinase inhibition leads to accumulation of the CDK inhibitor p27(Kip1) in NIH 3T3 cells. Blocking the proteasome-dependent degradation of p27(Kip1) impaired this accumulation, suggesting that MAP kinase does not act on p27(Kip1) protein synthesis. In the absence of extracellular signals (growth factors or cell adhesion), genetic activation of MAP kinase decreased the expression of p27(Kip1) as assessed by cotransfection experiments and by immunofluorescence detection. Importantly, MAP kinase activation also decreased the expression of a p27(Kip1) mutant, which cannot be phosphorylated by CDK2, suggesting that MAP kinase-dependent p27(Kip1) regulation is CDK2-independent. Accordingly, expression of dominant-negative CDK2 did not impair the down-regulation of p27(Kip1) induced by MAP kinase activation. These data demonstrate that the MAP kinase pathway regulates p27(Kip1) expression in fibroblasts essentially through a degradation mechanism, independently of p27(Kip1) phosphorylation by CDK2. This strengthens the role of this CDK inhibitor as a key effector of G(1) growth arrest, whose expression can be controlled by extracellular stimuli-dependent signaling pathways.  相似文献   

5.
Targeting of the cyclin-dependent kinase inhibitor p27(Kip1) for proteolysis has been thought to be mediated by Skp2, the F-box protein component of an SCF ubiquitin ligase complex. Degradation of p27(Kip1) at the G(0)-G(1) transition of the cell cycle has now been shown to proceed normally in Skp2(-/-) lymphocytes, whereas p27(Kip1) proteolysis during S-G(2) phases is impaired in these Skp2-deficient cells. Degradation of p27(Kip1) at the G(0)-G(1) transition was blocked by lactacystin, a specific proteasome inhibitor, suggesting that it is mediated by the ubiquitin-proteasome pathway. The first cell cycle of stimulated Skp2(-/-) lymphocytes appeared normal, but the second cycle was markedly inhibited, presumably as a result of p27(Kip1) accumulation during S-G(2) phases of the first cell cycle. Polyubiquitination of p27(Kip1) in the nucleus is dependent on Skp2 and phosphorylation of p27(Kip1) on threonine 187. However, polyubiquitination activity was also detected in the cytoplasm of Skp2(-/-) cells, even with a threonine 187 --> alanine mutant of p27(Kip1) as substrate. These results suggest that a polyubiquitination activity in the cytoplasm contributes to the early phase of p27(Kip1) degradation in a Skp2-independent manner, thereby promoting cell cycle progression from G(0) to G(1).  相似文献   

6.
The association of the p27(Kip1) protein with cyclin and cyclin-dependent kinase complexes inhibits their kinase activities and contributes to the control of cell proliferation. The p27(Kip1) protein has now been shown to be phosphorylated in vivo, and this phosphorylation reduces the electrophoretic mobility of the protein. Substitution of Ser(10) with Ala (S10A) markedly reduced the extent of p27(Kip1) phosphorylation and prevented the shift in electrophoretic mobility. Phosphopeptide mapping and phosphoamino acid analysis revealed that phosphorylation at Ser(10) accounted for approximately 70% of the total phosphorylation of p27(Kip1), and the extent of phosphorylation at this site was approximately 25- and 75-fold greater than that at Ser(178) and Thr(187), respectively. The phosphorylation of p27(Kip1) was markedly reduced when the positions of Ser(10) and Pro(11) were reversed, suggesting that a proline-directed kinase is responsible for the phosphorylation of Ser(10). The extent of Ser(10) phosphorylation was markedly increased in cells in the G(0)-G(1) phase of the cell cycle compared with that apparent for cells in S or M phase. The p27(Kip1) protein phosphorylated at Ser(10) was significantly more stable than the unphosphorylated form. Furthermore, a mutant p27(Kip1) in which Ser(10) was replaced with glutamic acid in order to mimic the effect of Ser(10) phosphorylation exhibited a marked increase in stability both in vivo and in vitro compared with the wild-type or S10A mutant proteins. These results suggest that Ser(10) is the major site of phosphorylation of p27(Kip1) and that phosphorylation at this site, like that at Thr(187), contributes to regulation of p27(Kip1) stability.  相似文献   

7.
In many human cancers, the cyclin-dependent kinase inhibitor p27(Kip1) is expressed at low or undetectable levels. The decreased p27(Kip1) expression allows cyclin-dependent kinase activity to cause cells to enter into S phase and correlates with poor patient survival. Inhibition of serine/threonine kinase Akt signaling by some pharmacological agents or by PTEN induces G(1) arrest, in part by up-regulating p27(Kip1). However, the role of Akt-dependent phosphorylation in p27(Kip1) regulation is not clear. Here, we show that Akt bound directly to and phosphorylated p27(Kip1). Screening p27(Kip1) phosphorylation sites identified the COOH-terminal Thr(198) residue as a novel site. Further analysis revealed that 14-3-3 proteins bound to p27(Kip1) through Thr(198) only when it was phosphorylated by Akt. Although Akt also phosphorylated p27(Kip1) at Ser(10) and Thr(187), these two sites were not involved in the binding to 14-3-3 proteins. p27(Kip1) phosphorylated at Thr(198) exists only in the cytoplasm. Therefore, Akt promotes cell-cycle progression through the mechanisms of phosphorylation-dependent 14-3-3 binding to p27(Kip1) and cytoplasmic localization.  相似文献   

8.
The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2)O(2)) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2)O(2) removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2)O(2) (0.1 μM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2)O(2) scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27Kip1.  相似文献   

9.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   

10.
Fibroblast growth factors (FGFs) are upstream activators of the mitogen-activated protein kinase pathway and mitogens in a wide variety of cells. However, whether the mitogen-activated protein kinase pathway solely accounts for the induction of cell cycle or antiapoptotic activity of the FGF receptor (FGFR) tyrosine kinase is not clear. Here we report that cell cycle inducer Cks1, which triggers ubiquitination and degradation of p27(Kip1), associates with the unphosphorylated form of FGFR substrate 2 (FRS2), an adaptor protein that is phosphorylated by FGFR kinases and recruits downstream signaling molecules. FGF-dependent activation of FGFR tyrosine kinases induces FRS2 phosphorylation, causes release of Cks1 from FRS2, and promotes degradation of p27(Kip1) in 3T3 cells. Since degradation of p27(Kip1) is a key regulatory step in activation of the cyclin E/A-Cdk complex during the G(1)/S transition of the cell cycle, the results suggest a novel mitogenic pathway whereby FGF and other growth factors that activate FRS2 directly activate cyclin-dependent kinases.  相似文献   

11.
p27(Kip1), an important regulator of Cdk2 activity and G1/S transition, is tightly regulated in a cell-type and condition-specific manner to integrate mitogenic and differentiation signals governing cell cycle progression. We show that p27 protein levels progressively declined from mid-G1 through late-G2 phase as density-arrested 3T3-L1 preadipocytes synchronously reentered the cell cycle during early stages of adipocyte differentiation. This dramatic fall in p27 protein accumulation was due, at least in part, to a decrease in protein stability. Specific inhibitors of the 26S proteasome were shown to completely block the decrease in p27 protein levels throughout G1, increase the abundance of ubiquitylated p27 protein, and inhibit G1/S transition resulting in G1 arrest. It is further demonstrated that p27 was phosphorylated on threonine 187 during S phase progression by Cdk2 and that phosphorylated p27 was polyubiquitylated and degraded. Furthermore, we demonstrate that Skp2 and Cks1 dramatically increased during S/G2 phase progression concomitantly with the maximal fall in p27 protein. Complete knockdown of Skp2 with RNA interference partially prevented p27 degradation equivalent to that observed with Cdk2 blockade suggesting that the SCF(Skp2) E3 ligase and other proteasome-dependent mechanisms contribute to p27 degradation during preadipocyte replication. Interestingly, Skp2-mediated p27 degradation was not essential for G1/S or S/G2 transition as preadipocytes shifted from quiescence to proliferation during adipocyte hyperplasia. Finally, evidence is presented suggesting that elevated p27 protein in the absence of Skp2 was neutralized by sequestration of p27 protein into Cyclin D1/Cdk4 complexes.  相似文献   

12.
The Cdk2 inhibitor, p27(Kip1), is degraded in a phosphorylation- and ubiquitylation-dependent manner at the G(1)-S transition of the cell cycle. Degradation of p27(Kip1) requires import into the nucleus for phosphorylation by Cdk2. Phosphorylated p27(Kip1) is thought to be subsequently re-exported and degraded in the cytosol. Using two-hybrid screens, we now show that p27(Kip1) interacts with a nuclear pore-associated protein, mNPAP60, map the interaction to the 3(10) helix of p27 and identify a point mutant in p27(Kip1) that is deficient for interaction (R90G). In vivo and in vitro, the loss-of-interaction mutant is poorly transported into the nucleus, while ubiquitylation of p27R90G occurs normally. In vivo, co-expression of cyclin E and Cdk2 rescues the import defect. However, mutant p27(Kip1) accumulates in a phosphorylated form in the nucleus and is not efficiently degraded, arguing that at least one step in the degradation of phosphorylated p27(Kip1) requires an interaction with the nuclear pore. Our results identify a novel component involved in p27(Kip1) degradation and suggest that degradation of p27(Kip1) is tightly linked to its intracellular transport.  相似文献   

13.
14.
为了研究DNA损伤反应中p2 7Kip1的表达及其调控机制 ,应用免疫印迹的实验结果表明 :10Gy 60 Coγ射线照射后 3h ,HeLa细胞中p2 7Kip1蛋白水平开始下降并持续到 2 4h ,进而失去它对CDKs的抑制功能 .Northern印迹结果显示 ,电离辐射 (IR)对p2 7Kip1mRNA表达水平无明显影响 ,说明电离辐射诱导p2 7Kip1表达水平的降低主要与蛋白质降解相关 ,但其具体的调控机制还不清楚 .已知在G1—S期p2 7Kip1蛋白的降低主要依赖细胞周期蛋白E Cdk2激酶将其磷酸化后的泛素化蛋白酶体途径 (ubiquitin proteasomepathway) .酶动力学研究结果揭示 :电离辐射后细胞周期蛋白E Cdk2激酶活性增高 ,12h细胞周期蛋白E Cdk2激酶活性达到最大 .当在照前用细胞周期蛋白E Cdk2抑制剂olomoucine (10 μmol L)抑制细胞周期蛋白E Cdk2激酶活性时 ,p2 7Kip1蛋白表达水平增加 .此外 ,还观察到电离辐射可诱导p2 7Kip1泛素化水平的增高 ,而在使用蛋白酶体抑制剂MG 132 (5 μmol L)处理HeLa细胞后 ,可抑制辐射诱导p2 7Kip1蛋白水平的下调 .研究结果提示 :泛素化蛋白酶体途径参与了辐射诱导P2 7Kip1蛋白表达下调的降解机制 .  相似文献   

15.
The cyclin-dependent kinase inhibitor p27Kip1 plays an important role in cell cycle regulation. The cyclin-dependent kinase-inhibitory activity of p27Kip1 is regulated by changes in its concentration and its subcellular localization. Several reports suggest that phosphorylation of p27Kip1 at serine 10, threonine 157, and threonine 187 regulate its localization. We have previously identified that carboxyl-terminal threonine 198 (Thr198) in p27Kip1 is a novel phosphorylation site and that Akt is associated with the phosphorylation at the site (Fujita, N., Sato, S., Katayama, K., and Tsuruo, T. (2002) J. Biol. Chem. 277, 28706-28713). We show herein that activation of the Ras/Raf/mitogen-activated protein kinase kinase (MAPK kinase/MEK) pathway also regulates phosphorylation of p27Kip1 at Thr198. MAPKs were not directly associated with p27Kip1 phosphorylation at Thr198, but the p90 ribosomal protein S6 kinases (RSKs) could bind to and directly phosphorylate p27Kip1 at Thr198 in a Ras/Raf/MEK-dependent manner. RSK-dependent phosphorylation promoted the p27Kip1 binding to 14-3-3 and its cytoplasmic localization. To prove the direct relationship between 14-3-3 binding and cytoplasmic localization, we constructed a p27Kip1-R18 fusion protein in which the R18 peptide was fused to the carboxyl-terminal region of p27Kip1. The R18 peptide is known to interact with 14-3-3 independent of phosphorylation. The p27Kip1-R18 distributed mainly in the cytosol, whereas mutant p27Kip1-R18 (p27Kip1-R18-K2) that had no 14-3-3 binding capability existed mainly in the nucleus. These results indicate that RSKs play a crucial role in cell cycle progression through translocation of p27Kip1, in addition to Akt, to the cytoplasm in a phosphorylation and 14-3-3 binding-dependent manner.  相似文献   

16.
p27Kip1 controls cell proliferation by binding to and regulating the activity of cyclin-dependent kinases (Cdks). Here we show that Cdk inhibition and p27 stability are regulated through direct phosphorylation by tyrosine kinases. A conserved tyrosine residue (Y88) in the Cdk-binding domain of p27 can be phosphorylated by the Src-family kinase Lyn and the oncogene product BCR-ABL. Y88 phosphorylation does not prevent p27 binding to cyclin A/Cdk2. Instead, it causes phosphorylated Y88 and the entire inhibitory 3(10)-helix of p27 to be ejected from the Cdk2 active site, thus restoring partial Cdk activity. Importantly, this allows Y88-phosphorylated p27 to be efficiently phosphorylated on threonine 187 by Cdk2 which in turn promotes its SCF-Skp2-dependent degradation. This direct link between transforming tyrosine kinases and p27 may provide an explanation for Cdk kinase activities observed in p27 complexes and for premature p27 elimination in cells that have been transformed by activated tyrosine kinases.  相似文献   

17.
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.  相似文献   

18.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

19.
The cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is an important regulator of cell cycle progression as it negatively regulates G(0/1) progression and plays a major role in controlling the cell cycle. The screening of the p27(Kip1) sequence identified many potential phosphorylation sites. Although Ser(10) and Thr(187) were shown to be important for p27(Kip1) function, the effects of a combined deletion of both sites on p27(Kip1) function are still unknown. To investigate the effects of the overexpression of exogenous p27(Kip1) protein lacking both the Ser(10) and Thr(187) sites on subcellular localization, cell cycle, and proliferation, a plasmid was constructed containing mutations of p27(Kip1) at Ser(10) and Thr(187) (S10A/T187A p27), and transfected into the HepG(2) cell line with Lipofectamine. Wild-type and mutant p27 plasmids S10A and T187A were transfected separately as control groups. As a result, the proliferation of HepG(2) cells was greatly inhibited and cell cycle was arrested in G(0/1) phase after exogenous p27(Kip1) double-mutant expression. All recombinant p27(Kip1) constructs were distributed in the nucleus after synchronization in G(0) phase by treatment with leptomycin B. The expressed wild-type and T187A p27(Kip1) proteins were translocated from the nucleus into cytoplasm when cells were exposed to 20% serum for 8 h, whereas the S10A p27(Kip1) and S10A/T187A p27(Kip1) proteins remained in the nucleus. FACS profiles and cell growth curves indicated that the Ser(10) and Thr(187) double mutant has no significant effect on the biological activities of cell cycle control and growth inhibition. Our results suggest that expression of the p27(Kip1) double-mutant abolishes its cytoplasmic redistribution but does not abrogate G(0/1) phase arrest in the HepG(2) cell line.  相似文献   

20.
Cyclin-dependent kinase (CDK) inhibitor p27Kip1 binds to the cyclin E.CDK2 complex and plays a major role in controlling cell cycle and cell growth. Our group and others have reported that anti-HER2 monoclonal antibodies exert inhibitory effects on HER2-overexpressing breast cancers through G1 cell cycle arrest associated with induction of p27Kip1 and reduction of CDK2. The role of p27Kip1 in anti-HER2 antibody-induced cell cycle arrest and growth inhibition is, however, still uncertain. Here we have provided several lines of evidence supporting a critical role for p27Kip1 in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. Induction of p27Kip1 and G1 growth arrest by anti-HER2 antibody, murine 4D5, or humanized trastuzumab (Herceptin) are concentration-dependent, time-dependent, irreversible, and long-lasting. The magnitude of G1 cell cycle arrest induced by trastuzumab or 4D5 is well correlated with the level of p27Kip1 protein induced. Up-regulation of p27Kip1 and G1 growth arrest could no longer be removed with as little as 14 h of treatment with trastuzumab. Anti-HER2 antibody-induced p27Kip1 protein, G1 arrest, and growth inhibition persist at least 5 days after a single treatment. The magnitude of growth inhibition of breast cancer cells induced by anti-HER2 antibody closely parallels the level of p27Kip1 induced. Induced expression of exogenous p27Kip1 results in a p27Kip1 level-dependent G1 cell cycle arrest and growth inhibition similar to that obtained with anti-HER2 antibodies. Reducing p27Kip1 expression using p27Kip1 small interfering RNA blocks anti-HER2 antibody-induced p27Kip1 up-regulation and G1 arrest. Treatment with anti-HER2 antibody significantly increases the half-life of p27Kip1 protein. Inhibition of ubiquitin-proteasome pathway, but not inhibition of calpain and caspase activities, up-regulates p27Kip1 protein to a degree comparable with that obtained with anti-HER2 antibodies. We have further demonstrated that anti-HER2 antibody significantly decreases threonine phosphorylation of p27Kip1 protein at position 187 (Thr-187) and increases serine phosphorylation of p27Kip1 protein at position 10 (Ser-10). Expression of S10A and T187A mutant p27Kip1 protein increases the fraction of cells in G1 and reduces a further antibody-induced G1 arrest. Consequently, p27Kip1 plays an important role in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition through post-translational regulation. Regulation of the phosphorylation of p27Kip1 protein is one of the post-translational mechanisms by which anti-HER2 antibody upregulates the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号