首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
传粉动物多样性的保护与农业景观传粉服务的提升   总被引:3,自引:0,他引:3  
传粉动物为许多植物尤其是作物提供了重要的传粉服务, 在保障全球粮食安全和人类福祉、缓冲气候变化对作物产量的影响等方面都发挥着重要的作用。然而来自全球土地利用变化、化学农药使用、外来物种入侵及气候变化等的威胁, 导致传粉动物的多样性下降并造成了依赖动物传粉的作物产量和品质的下降。针对这一情况, 作者提出了农业景观传粉动物多样性保护和利用的3种主要途径: (1)改善生产管理, 例如减少化学农药的使用、适当地采取有机种植; (2)促进景观多样性, 包括创建适宜野生传粉者的半自然生境、保护高价值的自然生境、作物多样化、合理配置资源和生境的空间分布; (3)加强对本土传粉动物的保护和开发利用。文章最后提出, 为进一步提升传粉服务, 还需加强对传粉者的生物学特征、传粉服务的需求与供给现状、影响传粉动物多样性和传粉服务的农作措施和景观因素等方面的研究。  相似文献   

2.

Purpose

Concentrating solar power (CSP) plants based on parabolic troughs utilise auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs.

Methods

A complete life cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35 % of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative energy demands (CED) and energy payback times (EPT) were also determined for each scenario.

Results and discussion

Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh and acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilisation of NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar-only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions.

Conclusions

Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilisation. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.  相似文献   

3.
As part of the Cradle to Cradle® (C2C) certification program, the C2C certification criterion, Renewable Energy and Carbon Management (RE&CM), focuses on use of electricity from renewable energy (RE) and direct greenhouse gas offsets in the manufacturing stage and, to a limited extent, on the cradle to gate only at the highest level of certification. The aim of this study is to provide decision makers with a quantified overview of possible limitations of that C2C certification requirement and potential gains by introducing a full life cycle assessment (LCA) perspective to the scheme. Scenario analysis was used to perform an LCA of an aluminum can system representing different levels of the C2C certification criterion, RE&CM, considering different strategies to achieve 100% RE in the manufacturing stage. The adoption of a broader life cycle RE perspective was considered through the implementation of electricity from renewable sources from cradle to grave. Our results show that compliance with the current RE&CM certification framework offers limited benefits, that is, significant reduction for climate change, but negligible reductions for other environmental impacts (e.g., particulate matter and acidification). However, increasing the share of RE in the primary aluminum production from a full life cycle perspective can greatly increase the environmental benefits brought up by the C2C certification not only for climate change, but also for the broader range of impact categories. In our striving toward environmental sustainability, which often cannot be approximated by climate‐change impacts alone, we therefore recommend decision makers in industries to combine the C2C certification with LCA when they define strategies for the selection of RE and raw materials suppliers.  相似文献   

4.
跨国土地利用及其生态影响   总被引:1,自引:0,他引:1  
陆小璇 《生态学报》2014,34(6):1606-1613
在全球食物价格不断上涨,粮食安全已经威胁到经济安全的环境下,跨国农用地投资成为国际浪潮。跨国农用地投资推动着各国的土地资源向全球化资源转变,对土地的跨国利用成为全球土地资源优化配置的必然。在对跨国土地利用的背景及现状进行阐述的基础上,指出"代理性农业耕作"方式对区域生态环境可能造成的影响。同时,新型农业科技与跨国土地利用的结合,也在推动着农业经济发展的同时,改变着传统的土地利用模式,进而改变着区域生态环境。最后,指出需要对跨国土地利用做出理性分析并建立相关的国际规则,从而维护可持续粮食安全及生态安全。  相似文献   

5.
Bioenergy is expected to play a critical role in climate change mitigation. Most integrated assessment models assume an expansion of agricultural land for cultivation of energy crops. This study examines the suitability of land for growing a range of energy crops on areas that are not required for food production, accounting for climate change impacts and conservation requirements. A global fuzzy logic model is employed to ascertain the suitable cropping areas for a number of sugar, starch and oil crops, energy grasses and short rotation tree species that could be grown specifically for energy. Two climate change scenarios are modelled (RCP2.6 and RCP8.5), along with two scenarios representing the land which cannot be used for energy crops due to forest and biodiversity conservation, food agriculture and urban areas. Results indicate that 40% of the global area currently suitable for energy crops overlaps with food land and 31% overlaps with forested or protected areas, highlighting hotspots of potential land competition risks. Approximately 18.8 million km2 is suitable for energy crops, to some degree, and does not overlap with protected, forested, urban or food agricultural land. Under the climate change scenario RCP8.5, this increases to 19.6 million km2 by the end of the century. Broadly, climate change is projected to decrease suitable areas in southern regions and increase them in northern regions, most notably for grass crops in Russia and China, indicating that potential production areas will shift northwards which could potentially affect domestic use and trade of biomass significantly. The majority of the land which becomes suitable is in current grasslands and is just marginally or moderately suitable. This study therefore highlights the vital importance of further studies examining the carbon and ecosystem balance of this potential land‐use change, energy crop yields in sub‐optimal soil and climatic conditions and potential impacts on livelihoods.  相似文献   

6.
Urban settlements are home to the greatest levels of greenhouse gas emissions and energy consumption globally, with unprecedented rates of urban expansion occurring today. With the majority of global urbanization occurring along the periphery of urban areas in developing countries, investigation of “green” building practices designed specifically for “peri‐urban” regions is critical for a low‐emitting future society. This study assesses a state‐of‐the‐art residence designed for a middle‐class family of four residing in the peri‐urban region of Bangkok, Thailand. The residence employs both demand‐side management strategies and low‐emitting energy supply technology to achieve energy‐positive status. To elucidate the influence that key design decisions have on the life cycle sustainability of the home, several variants of the residence are modeled. A process‐based life cycle assessment consistent with the International Organization for Standardization (ISO) 14044:2006 standard and following ReCiPe Midpoint life cycle impact assessment methodology is used to quantify the life cycle impacts per square meter of conditioned residence floor area for climate change (582 kilograms [kg] carbon dioxide equivalent), terrestrial acidification (4.01 kg sulfur dioxide equivalent), freshwater eutrophication (30.4 grams phosphorous equivalent), fossil depletion (362 kg iron equivalent), and metal depletion (186 kg oil equivalent) impacts. We model multiple scenarios in which varying proportions of Bangkok's peri‐urban detached housing demand are fulfilled by the energy‐positive residence variants. Under the best‐case replacement scenario (i.e., 100% replacement of future peri‐urban detached housing), significant reductions are achieved across the life cycle climate change (80%), terrestrial acidification (82%), and fossil depletion (81%) impact categories for the steel‐framed, energy‐positive residence.  相似文献   

7.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   

8.

Purpose

Life cycle impact assessment (LCIA) translates emissions and resource extractions into a limited number of environmental impact scores by means of so-called characterisation factors. There are two mainstream ways to derive characterisation factors, i.e. at midpoint level and at endpoint level. To further progress LCIA method development, we updated the ReCiPe2008 method to its version of 2016. This paper provides an overview of the key elements of the ReCiPe2016 method.

Methods

We implemented human health, ecosystem quality and resource scarcity as three areas of protection. Endpoint characterisation factors, directly related to the areas of protection, were derived from midpoint characterisation factors with a constant mid-to-endpoint factor per impact category. We included 17 midpoint impact categories.

Results and discussion

The update of ReCiPe provides characterisation factors that are representative for the global scale instead of the European scale, while maintaining the possibility for a number of impact categories to implement characterisation factors at a country and continental scale. We also expanded the number of environmental interventions and added impacts of water use on human health, impacts of water use and climate change on freshwater ecosystems and impacts of water use and tropospheric ozone formation on terrestrial ecosystems as novel damage pathways. Although significant effort has been put into the update of ReCiPe, there is still major improvement potential in the way impact pathways are modelled. Further improvements relate to a regionalisation of more impact categories, moving from local to global species extinction and adding more impact pathways.

Conclusions

Life cycle impact assessment is a fast evolving field of research. ReCiPe2016 provides a state-of-the-art method to convert life cycle inventories to a limited number of life cycle impact scores on midpoint and endpoint level.
  相似文献   

9.
Human Health Area of Protection (HHAoP) has been receiving greater emphasis in recent years in the scope of Environmental Impact Assessment (EIA) of products or services with more impact categories specifically dedicated to include different dimensions of HHAoP. Human health impacts of light sources, however, have received less attention despite their prevalent use for backlighting, general lighting and architectural purposes. Currently, Environmental Product Declarations (EPDs) of lighting devices and electronic devices with backlit screens do not address endpoint impacts nor do they specify technical properties of the light that can enable such an assessment. This study investigates endpoint impacts of eleven lighting devices (1) due to light exposure during the use phase and (2) due to emissions throughout their life cycle. Impacts are quantified as disease burden in terms of disability adjusted life years (DALY). The burden of exposure was calculated using attributable fraction (AF) method. The burden due to life cycle emissions was quantified using GaBi software and built-in life cycle impact assessment (LCIA) method ReCiPe. Endpoint impact categories included were climate change human health, human toxicity, ionizing radiation, ozone depletion, particulate matter formation, and photochemical oxidant formation. The disease burden due to light exposure of all light sources is of two orders of magnitude greater than the disease burden due to life cycle emissions pointing to the need for its treatment.  相似文献   

10.
Given the increasing environmental impacts associated with global agri‐food systems, operating and developing these systems within the so‐called absolute environmental boundaries has become crucial, and hence the absolute environmental sustainability concept is particularly relevant. This study introduces an approach called absolute sustainability‐based life cycle assessment (ASLCA) that informs the climate impacts of an agri‐food system (on any economic level) in absolute terms. First, a global carbon budget was calculated that is sufficient to limit global warming to below 2°C. Next, a share of the carbon budget available to the global agri‐food sector was estimated, and then it was shared between agri‐food systems on multiple economic levels using four alternative methods. Third, the climate impacts of those systems were calculated using life cycle assessment methodology and were benchmarked against those carbon budget shares. This approach was used to assess a number of New Zealand agri‐food systems (agri‐food sector, horticulture industries and products) to investigate how these systems operated relative to their carbon budget shares. The results showed that, in 2013, the New Zealand agri‐food systems were within their carbon budget shares for one of the four methods, and illustrated the scale of change required for agri‐food systems to perform within their carbon budget shares. This method can potentially be extended to consider other environmental impacts with global boundaries; however, further development of the ASLCA is necessary to account for other environmental impacts whose boundaries are only meaningful when defined at a regional or local level.  相似文献   

11.
Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable agricultural policies for the future.  相似文献   

12.
Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO2) levels’ changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ‐GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO2 concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained.  相似文献   

13.
The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land‐use strategies: off‐setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of “wildlife‐friendly” habitat features (land sharing). However, a key unanswered question is whether sparing or sharing farming would best conserve functional diversity, which can promote ecosystem stability and resilience to future land‐use change. Focusing on bird communities in tropical cloud forests of the Colombian Andes, we test the performance of each strategy in conserving functional diversity. We show that multiple components of avian functional diversity in farmland are positively related to the proximity and extent of natural forest. Using landscape and community simulations, we also show that land‐sparing agriculture conserves greater functional diversity and predicts higher abundance of species supplying key ecological functions than land sharing, with sharing becoming progressively inferior with increasing isolation from remnant forest. These results suggest low‐intensity agriculture is likely to conserve little functional diversity unless large blocks of adjacent natural habitat are protected, consistent with land sparing. To ensure the retention of functionally diverse ecosystems, we urgently need to implement mechanisms for increasing farmland productivity whilst protecting spared land.  相似文献   

14.
15.
《植物生态学报》1958,44(5):543
随着人口的增长和人类社会的发展, 土地利用与土地覆盖变化已经是不可避免。土地利用与土地覆盖变化不仅对生态系统的要素、结构和功能产生深远的影响, 也会对全球变化产生反馈作用。针对土地利用与土地覆盖变化的过程、驱动机制以及在各个方面可能产生的生态环境效应的科学研究已经全面开展。该文综述了土地利用与土地覆盖变化对气候、土壤、生物地球化学循环、生物多样性以及区域生态环境等影响方面的研究进展, 并提出了相关研究的前沿方向展望。随着新技术的不断发展, 学者们将更多地侧重预测未来全球变化背景下的土地利用与土地覆盖变化趋势、合理性以及适应性, 为可持续发展提供基础资料和理论依据。  相似文献   

16.
A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological-economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5' X 5' latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.  相似文献   

17.

Purpose

Cooking energy is an essential requirement of any human dwelling. With the recent upsurge in petroleum prices coupled with intrinsic volatility of international oil markets, it is fast turning into a politico-socio-economic dilemma for countries like India to sustain future subsidies on liquefied petroleum gas (LPG) and kerosene. The aim of this paper is to evaluate and compare the environmental performance of various cooking fuel options, namely LPG (NG), LPG (CO), kerosene, coal, electricity, firewood, crop residue, dung cake, charcoal, and biogas, in the Indian context. The purpose of this study is to find environmentally suitable alternatives to LPG and kerosene for rural and urban areas of the country.

Methods

The study assessed the cooking fuel performance on 13 ReCiPe environmental impact categories using the life cycle assessment methodology. The study modeled the system boundary for each fuel based on the Indian scenario and prepared a detailed life cycle inventory for each cooking fuel taking 1 GJ of heat energy transferred to cooking pot as the functional unit.

Results and discussion

The cooking fuels with the lowest life cycle environmental impacts are biogas followed by LPG, kerosene, and charcoal. The environmental impacts of using LPG are about 15 to 18 % lower than kerosene for most environmental impact categories. LPG derived from natural gas has about 20 to 30 % lower environmental impact than LPG derived from crude oil. Coal and dung cake have the highest environmental impacts because of significant contributions to climate change and particulate formation, respectively. Charcoal produced from renewable wood supply performs better than kerosene on most impact categories except photochemical oxidation, where its contribution is 19 times higher than kerosene.

Conclusions

Biogas and charcoal can be viewed as potentially sustainable cooking fuel options in the Indian context because of their environmental benefits and other associated co-benefits such as land farming, local employment opportunities, and skill development. The study concluded that kerosene, biogas, and charcoal for rural areas and LPG, kerosene, and biogas for urban areas have the lower environmental footprint among the chosen household cooking fuels in the study.  相似文献   

18.
土地利用与土地覆盖变化对生态系统的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
白娥  薛冰 《植物生态学报》2020,44(5):543-552
随着人口的增长和人类社会的发展, 土地利用与土地覆盖变化已经是不可避免。土地利用与土地覆盖变化不仅对生态系统的要素、结构和功能产生深远的影响, 也会对全球变化产生反馈作用。针对土地利用与土地覆盖变化的过程、驱动机制以及在各个方面可能产生的生态环境效应的科学研究已经全面开展。该文综述了土地利用与土地覆盖变化对气候、土壤、生物地球化学循环、生物多样性以及区域生态环境等影响方面的研究进展, 并提出了相关研究的前沿方向展望。随着新技术的不断发展, 学者们将更多地侧重预测未来全球变化背景下的土地利用与土地覆盖变化趋势、合理性以及适应性, 为可持续发展提供基础资料和理论依据。  相似文献   

19.
Purpose

Cotton yarns spun from natural fibers are widely used in the apparel industry. Most of waste cotton goods are now disposed by incineration or landfill, which brings resource and environmental challenges to the society. Using the waste cotton to spin yarns is an alternative way to forward a more sustainable future. In this research, two scenarios for the environmental impacts of yarns spun from corresponding fibers are investigated, including recycled cotton fibers and virgin cotton fibers.

Methods

The life cycle assessment (LCA) has been conducted according to the collected data from on-site investigation of typical production factories. The life cycle for the recycled cotton yarn production is divided into five stages, i.e., raw material acquisition, transportation, breaking, mixing, and spinning. The life cycle of virgin cotton yarn production is been divided into four stages, i.e., raw material acquisition, transportation, mixing, and spinning. The functional unit is 1000 kg produced yarns which are used for weaving into the fabrics. Notable impacts on climate change, fossil depletion, water depletion, and human toxicity were observed.

Results

The life cycle impact assessment (LCIA) results show that environmental impacts of recycled cotton yarns are far less than those of virgin cotton yarns, except for climate change and water depletion. The reason is that the land occupation and irrigation water have great impact on environmental impacts of cotton cultivation. In spinning, the electricity is the key factor whose environmental impacts account for the most in the virgin cotton yarn scenario, while the electricity and water consumptions are the key factors for the recycled cotton yarn scenario in the life cycle of yarn production. The sensitivity analysis indicates that improving energy efficiency can significantly reduce environmental burdens for both the two scenarios. The uncertainty distribution of water depletion, human toxicity, fossil depletion, and climate change of the two scenarios were determined with a 90% confidence interval.

Conclusions

The LCIA results reveal recycled cotton yarn is a viable alternative to relieve resource and environmental pressure. About 0.5 ha of agricultural land can be saved, 6600 kg CO2 eq can be reduced, and 2783 m3 irrigation water can be saved by using 1000 kg of the recycled cotton yarns. It can be concluded that the recycled cotton fibers can be served as a substitute for virgin cotton fibers to reduce agricultural land and avoid environmental impacts generated from the cotton planting.

  相似文献   

20.
Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change‐associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change–contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change–contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat‐soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein‐binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change–contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision‐making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the ecological and socioeconomic risk of greenhouse gases and marine pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号