首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

Rarely considered in environmental assessment methods, potential land use impacts on a series of ecosystem services must be accounted for in widely used decision-making tools such as life cycle assessment (LCA). The main goal of this study is to provide an operational life cycle impact assessment characterization method that addresses land use impacts at a global scale by developing spatially differentiated characterization factors (CFs) and assessing the extent of their spatial variability using different regionalization levels.

Methods

The proposed method follows the recommendations of previous work and falls within the framework and principles for land use impact assessment established by the United Nations Environment Programme/Society of Environmental Toxicology and Chemistry Life Cycle Initiative. Based on the spatial approach suggested by Saad et al. (Int J Life Cycle Assess 16: 198–211, 2011), the intended impact pathways that are modeled pertain to impacts on ecosystem services damage potential and focus on three major ecosystem services: (1) erosion regulation potential, (2) freshwater regulation potential, and (3) water purification potential. Spatially-differentiated CFs were calculated for each biogeographic region of all three regionalization scale (Holdridge life regions, Holdridge life zones, and terrestrial biomes) along with a nonspatial world average level. In addition, seven land use types were assessed considering both land occupation and land transformation interventions.

Results and discussion

A comprehensive analysis of the results indicates that, when compared to all resolution schemes, the world generic averaged CF can deviate for various ecosystem types. In the case of groundwater recharge potential impacts, this range varied up to factors of 7, 4.7, and 3 when using the Holdridge life zones, the Holdridge regions, and the terrestrial biomes regionalization levels, respectively. This validates the importance of introducing a regionalized assessment and highlights how a finer scale increases the level of detail and consequently the discriminating power across several biogeographic regions, which could not have been captured using a coarser scale. In practice, the implementation of such regionalized CFs suggests that an LCA practitioner must identify the ecosystem in which land occupation or transformation activities occur in addition to the traditional inventory data required—namely, the land use activity and the inventory flow.

Conclusions

The variability of CFs across all three regionalization levels provides an indication of the uncertainty linked to nonspatial CFs. Among other assumptions and value choices made throughout the study, the use of ecological borders over political boundaries was deemed more relevant to the interpretation of environmental issues related to specific functional ecosystem behaviors.  相似文献   

2.

Purpose

Change of vegetation cover and increased land use intensity, particularly for agricultural use, can affect species richness. Within life cycle impact assessment, methods to assess impacts of land use on a global scale are still in need of development. In this work, we present a spatially explicit data-driven approach to characterize the effect of agricultural land occupation on different species groups.

Methods

We derived characterization factors for the direct impact of agricultural land occupation on relative species richness. Our method identifies potential differences in impacts for cultivation of different crop types, on different species groups, and in different world regions. Using empirical species richness data gathered via an extensive literature search, characterization factors were calculated for four crop groups (oil palm, low crops, Pooideae, and Panicoideae), four species groups (arthropods, birds, mammals, and vascular plants), and six biomes.

Results and discussion

Analysis of the collected data showed that vascular plant richness is more sensitive than the species richness of arthropods to agricultural land occupation. Regarding the differences between world regions, the impact of agricultural land use was lower in boreal forests/taiga than in temperate and tropical regions. The impact of oil palm plantations was found to be larger than that of Pooideae croplands, although we cannot rule out that this difference is influenced by the spatial difference between the oil palm- and Pooideae-growing regions as well. Analysis of a subset of data showed that the impact of conventional farming was larger than the impact of low-input farming.

Conclusions

The impact of land occupation on relative species richness depends on the taxonomic groups considered, the climatic region, and farm management. The influence of crop type, however, was found to be of less importance.  相似文献   

3.

Purpose

To assess the diverse environmental impacts of land use, a standardization of quantifying land use elementary flows is needed in life cycle assessment (LCA). The purpose of this paper is to propose how to standardize the land use classification and how to regionalize land use elementary flows.

Materials and methods

In life cycle inventories, land occupation and transformation are elementary flows providing relevant information on the type and location of land use for land use impact assessment. To find a suitable land use classification system for LCA, existing global land cover classification systems and global approaches to define biogeographical regions are reviewed.

Results and discussion

A new multi-level classification of land use is presented. It consists of four levels of detail ranging from very general global land cover classes to more refined categories and very specific categories indicating land use intensities. Regionalization is built on five levels, first distinguishing between terrestrial, freshwater, and marine biomes and further specifying climatic regions, specific biomes, ecoregions and finally indicating the exact geo-referenced information of land use. Current land use inventories and impact assessment methods do not always match and hinder a comprehensive assessment of land use impact. A standardized definition of land use types and geographic location helps to overcome this gap and provides the opportunity to test the optimal resolution of land cover types and regionalization for each impact pathway.

Conclusions and recommendation

The presented approach provides the necessary flexibility to providers of inventories and developers of impact assessment methods. To simplify inventories and impact assessment methods of land use, we need to find archetypical situations across impact pathways, land use types and regions, and aggregate inventory entries and methods accordingly.
  相似文献   

4.

Purpose

A framework for the inclusion of land use impact assessment and a set of land use impact indicators has been recently proposed for life cycle assessment (LCA) and no case studies are available for forest biomass. The proposed methodology is tested for Scandinavian managed forestry; a comparative case study is made for energy from wood, agro-biomass and peat; and sensitivity to forest management options is analysed.

Methods

The functional unit of this comparative case study is 1 GJ of energy in solid fuels. The land use impact assessment framework of the United Nations Environment Programme and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) is followed and its application for wood biomass is critically analysed. Applied midpoint indicators include ecological footprint and human appropriation of net primary production, global warming potential indicator for biomass (GWPbio-100) and impact indicators proposed by UNEP-SETAC on ecosystem services and biodiversity. Options for forest biomass land inventory modelling are discussed. The system boundary covers only the biomass acquisition phase. Management scenarios are formulated for forest and barley biomass, and a sensitivity analysis focuses on impacts of land transformations for agro-biomass.

Results and discussion

Meaningful differences were found in between solid biofuels from distinct land use classes. The impact indicator results were sensitive to land occupation and transformation and differed significantly from inventory results. Current impact assessment method is not sensitive to land management scenarios because the published characterisation factors are still too coarse and indicate differences only between land use types. All indicators on ecosystem services and biodiversity were sensitive to the assumptions related with land transformation. The land occupation (m2a) approach in inventory was found challenging for Scandinavian wood, due to long rotation periods and variable intensities of harvests. Some suggestions of UNEP-SETAC were challenged for the sake of practicality and relevance for decision support.

Conclusions

Land use impact assessment framework for LCA and life cycle impact assessment (LCIA) indicators could be applied in a comparison of solid bioenergy sources. Although forest bioenergy has higher land occupation than agro-bioenergy, LCIA indicator results are of similar magnitude or even lower for forest bioenergy. Previous literature indicates that environmental impacts of land use are significant, but it remains questionable if these are captured with satisfactory reliability with the applied LCA methodology, especially for forest biomass. Short and long time perspectives of land use impacts should be studied in LCA with characterisation factors for all relevant timeframes, not only 500 years, with a forward-looking perspective. Characterisation factors need to be modelled further for different (forest) land management intensities and for peat excavation.  相似文献   

5.

Purpose

This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper are (1) to develop a LCI parametric model adaptable to a range of wooden pallets, (2) to test this model with a reference product (non-reversible pallet with four-way blocks) and (3) to determine numerical correlations between the environmental impacts and the most significant LCI parameters; these correlations can be used to improve the design of new wooden pallets.

Methods

The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent and dependent parameters was used to describe the LCI flows of a generic wooden pallet. The LCI parametric model was applied to calculate the environmental impacts of the reference product, with regard to a selection of impact categories at midpoint level (climate change, human toxicity, particulate matter formation, agricultural land occupation, fossil depletion). The model was then applied to further 11 wooden pallets belonging to the same category.

Results and discussion

The definition of a LCI parametric model based on 31 independent parameters and 21 dependent parameters streamlined the data collection process, as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value of environmental impact) and end-of-life (avoided impact). This result is driven by two parameters: mass of wood and average distance for transport of wood. Based on the results of the application of the LCI parametric model to the identified products, one parameter-based regression and one multiple non-linear regression allowed to define a correlation between the life cycle impact assessment (LCIA) category indicators considered and the most influencing parameters.

Conclusions

The definition of LCI parametric model in the wooden pallet sector can effectively be used for calculating the environmental impacts of products with different designs, as well as for obtaining a preliminary estimation of the life cycle environmental impacts of new products.  相似文献   

6.
Purpose

Land use can cause significant impacts on ecosystems and natural resources. To assess these impacts using life cycle assessment (LCA) and ensure adequate decision-making, comprehensive national inventories of land occupation and transformation flows are required. Here, we aim at developing globally differentiated inventories of land use flows that can be used for primary use in life cycle impact assessment or national land planning.

Methods

Using publicly available data and inventory techniques, national inventories for several land use classes were developed. All land use classes were covered with the highest retrievable level of disaggregation within urban, forestry, agriculture and other land use classes, thus differentiating 21 land use classes. For illustrating the application of this newly developed inventory, two different application settings relevant to life cycle impact assessment were considered: the calculation of global normalisation references for 11 land use impact indicators related to soil quality assessment (adopting the methods recommended by the EU Commission) and the determination of generic globally applicable characterisation factors (CFs) resulting from aggregation of country-level CFs for situations for use when land use location is unknown.

Results and discussion

We built national inventories of 21 land occupation and 17 land transformation flows for 225 countries in the world for the reference year 2010. Cross-comparisons with existing inventories of narrower scopes attested its consistency. Detailed analyses of the calculated global normalisation references for the 11 land use impact categories showed different patterns across the land use impact indicators for each country, thus raising attention on key land use impacts specific to each country. Furthermore, the upscaling of country-level CFs to global generic CFs using the land use inventory revealed discrepancies with other alternative approaches using land use data at different resolutions.

Conclusions

In this study, we made a first attempt at developing national inventories of land use flows with sufficient disaggregation level to enable the calculation of normalisation references and differentiated impacts. However, the findings also demonstrated the need to refine the consistency of the inventory, particularly in the combination of land cover and land use data, which should be harmonised in future studies, and to expand it with differentiated coverage of more land use flows relevant to impact assessment.

  相似文献   

7.

Purpose

Life cycle assessment is usually an assessment tool, which only considers steady-state processes, as the temporal and spatial dimensions are lost during the life cycle inventory (LCI). This approach therefore reduces the environmental relevance of certain results, as it has been underlined in the case of climate change studies. Given that the development of dynamic impact methods is based on dynamic inventory data, it seems essential to develop a general methodology to achieve a temporal LCI.

Methods

This study presents a method for selecting the steps, within the whole process network, for which dynamics need to be considered while others can be approximated by steady-state representation. The selection procedure is based on the sensitivity of the impacts on the variation of environmental and economic flows. Once these flows have been identified, their respective timescales are compared to the inherent timescales of the impact categories affected by the flows. The timescales of the impacts are divided into three categories (days, months, years) based on a literature review of the ReCiPe method. The introduction of a temporal dynamic depends on the relationship between the timescale of the environmental and economic flows on the one hand and that of the concerned impact on the other hand.

Results and discussion

This approach is illustrated by the life cycle assessment of palm methyl ester and ethanol from sugarcane. In both cases, the introduction of a temporal dynamic is limited to a small proportion of the total number of flows: 0.1 % in the sugarcane ethanol production and 0.01 % in the palm methyl ester production. Future developments of time integration in the LCI and in the life cycle impact assessment (LCIA) are also discussed in order to deal with the need of characterization functions and the recurrent problem of waiting times.

Conclusions

This work provides a method to select specific flows where the introduction of temporal dynamics is most relevant. It is based on sensitivity analyses and on the relationship between the timescales of the flows and the timescale of the involved impact. The time-distributed LCI generated by using this approach could then be coupled with a dynamic LCIA proposed in the literature.  相似文献   

8.

Purpose

Halting the loss of biodiversity while providing food security for a growing and prospering world population is a challenge. One possible solution to this dilemma is organic agriculture, which is expected to enhance biodiversity on the farmland. However, organic products often require larger areas. This study demonstrates how we can quantify and compare the direct land use impacts on biodiversity of organic and conventional food products such as milk.

Material and methods

This study assessed direct land use impacts of 1 l of milk leaving the farm gate. Inventory data on land occupation were extracted from a life cycle assessment study of 15 farms in southern Sweden. Direct land use change data were derived from the FAO statistical database. Spatially differentiated characterization factors of occupation (CFOcc) and transformation (CFTrans) were calculated based on the relative difference of plant species richness on agricultural land compared to a (semi) natural regional reference. Data on plant species richness and regeneration times of ecosystems (for calculating transformation impacts) were derived from a literature review. To account for differences in biodiversity value between regions, a weighting system based on absolute species richness, vulnerability and irreplaceability was applied.

Results and discussion

Organic milk had a lower direct land use impact than conventional milk, although it required about double the area. Occupation impacts dominated the results and were much smaller for organic than conventional milk, as CFOcc of organic land uses were considerably smaller. For transformation impacts, differences between the two farming practices were even more pronounced. The highest impacts were caused by soymeal in concentrate feeds (conventional milk) due to large-scale deforestation in its country of cultivation (i.e. Brazil and Argentina). However, lack of reliable data posed a challenge in the assessment of transformation impacts. Overall, results were highly sensitive to differences in land occupation area between farms, the CFOcc and assumptions concerning transformed area. Sensitivity and robustness of results were tested and are discussed.

Conclusions

Although organic milk required about twice as much land as conventional, it still had lower direct land use impacts on biodiversity. This highlights the importance of assessing land use impacts not only based on area but also considering the actual impacts on biodiversity. The presented approach allows to quantify and compare hot- and coldspots in the agricultural stage of milk production and could potentially also be applied to other agricultural products. However, more research is needed to allow quantification of indirect land use impacts.  相似文献   

9.

Purpose

The main objective of this study is to expand the discussion about how, and to what extent, the environmental performance is affected by the use of different life cycle impact assessment (LCIA) illustrated by the case study of the comparison between environmental impacts of gasoline and ethanol form sugarcane in Brazil.

Methods

The following LCIA methods have been considered in the evaluation: CML 2001, Impact 2002+, EDIP 2003, Eco-indicator 99, TRACI 2, ReCiPe, and Ecological Scarcity 2006. Energy allocation was used to split the environmental burdens between ethanol and surplus electricity generated at the sugarcane mill. The phases of feedstock and (bio)fuel production, distribution, and use are included in system boundaries.

Results and discussion

At the midpoint level, comparison of different LCIA methods showed that ethanol presents lower impacts than gasoline in important categories such as global warming, fossil depletion, and ozone layer depletion. However, ethanol presents higher impacts in acidification, eutrophication, photochemical oxidation, and agricultural land use categories. Regarding to single-score indicators, ethanol presented better performance than gasoline using ReCiPe Endpoint LCIA method. Using IMPACT 2002+, Eco-indicator 99, and Ecological Scarcity 2006, higher scores are verified for ethanol, mainly due to the impacts related to particulate emissions and land use impacts.

Conclusions

Although there is a relative agreement on the results regarding equivalent environmental impact categories using different LCIA methods at midpoint level, when single-score indicators are considered, use of different LCIA methods lead to different conclusions. Single-score results also limit the interpretability at endpoint level, as a consequence of small contributions of relevant environmental impact categories weighted in a single-score indicator.  相似文献   

10.

Purpose

Biopolymers are considered to be environmentally friendlier than petroleum-based polymers, but little is known about their environmental performance against petroleum-based products. This paper presents the results of a life cycle assessment (LCA) of two prototype biocomposite formulations produced by extrusion of wood fibre with either polylactic acid (PLA) or a blend of PLA and locally produced thermoplastic starch (TPS).

Methods

The study followed the LCA methodology outlined in the two standards set out by the International Organization for Standardization (ISO): ISO 14040 and ISO 14044 of 2006. A life cycle inventory (LCI) for the biocomposite formulations was developed, and a contribution analysis was performed to identify the significant inputs. Environmental performances of the two formulations were then compared with each other and polypropylene (PP), a petroleum-based polymer. The US Environmental Protection Agency’s impact assessment method, “TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts”, was combined with Cumulative Energy Demand (a European method) in order to characterize the inventory flows. Environmental impact categories chosen for the analysis were the following: global warming, stratospheric ozone depletion, acidification of land and water, eutrophication, smog, human health (respiratory, carcinogenic, and non-carcinogenic) effects and ecotoxicity.

Results and discussion

We found that PLA is the significant input which contributes mostly to fossil fuel consumption, acidification and respiratory and smog effects. Impacts from PLA transport from the faraway source significantly added more burden to its contributions. TPS causes less environmental burden compared to PLA; the environmental performance of the biocomposite improved when a blend of PLA and TPS is used in formulating the biocomposite. The two formulations performed better than PP in all the environmental impact categories except eutrophication effects, which is important on a regional basis.

Conclusions

The following conclusions were drawn from this study:
  • PLA is the environmentally significant input among the three raw materials.
  • TPS causes less environmental burden than PLA. Environmental performance of the biocomposite improves in the life cycle energy consumption, fossil energy use, ozone depletion and non-carcinogenic impact categories when a blend of PLA and TPS is used.
  • The biocomposite can outperform PP in all the impact categories except eutrophication effects if manufactured using hydroelectricity.
The biopolymer could be a potential alternative to PP as it could cause less of a burden to the environment on a cradle-to-gate basis. Environmental impacts at the complete life cycle levels should be looked into in order to fully understand its potential.  相似文献   

11.

Purpose

In life cycle assessment (LCA), literature suggests accounting for land as a resource either by what it delivers (e.g., biomass content) or the time and space needed to produce biomass (land occupation), in order to avoid double-counting. This paper proposes and implements a new framework to calculate exergy-based spatial explicit characterization factors (CF) for land as a resource, which deals with both biomass and area occupied on the global scale.

Methods

We created a schematic overview of the Earth, dividing it into two systems (human-made and natural), making it possible to account for what is actually extracted from nature, i.e., the biomass content was set as the elementary flow to be accounted at natural systems and the land occupation (through the potential natural net primary production) was set as the elementary flow at human-made systems. Through exergy, we were able to create CF for land resources for these two different systems. The relevancy of the new CF was tested for a number of biobased products.

Results and discussion

Site-generic CF were created for land as a resource for natural systems providing goods to humans, and site-generic and site-dependent CF (at grid, region, country, and continent level) were created for land as a resource within human-made systems. This framework differed from other methods in the sense of accounting for both land occupation and biomass content but without double-counting. It is set operationally for LCA and able to account for land resources with more completeness, allowing spatial differentiation. When site-dependent CF were considered for land resources, the overall resource consumption of certain products increased up to 77 % in comparison with site-generic CF-based data.

Conclusions

This paper clearly distinguished the origin of the resource (natural or human-made systems), allowing consistent accounting for land as a resource. Site-dependent CF for human-made systems allowed spatial differentiation, which was not considered in other resource accounting life cycle impact assessment methods.  相似文献   

12.

Purpose

Land use in dry lands can result in a final stage where land is completely depleted or entirely degraded causing the desertification phenomenon. The first part (part 1) of this series of two articles proposed a methodology to include desertification in life cycle assessment (LCA). A set of variables to be measured in the life cycle inventory, characterization factors, and an impact assessment method for the life cycle impact assessment phase were proposed. This second part (part 2) aims at showing the application of the model proposed in part 1 on two case studies of agricultural activities.

Methods

The impact model proposed is applied to plots of land devoted to agricultural activities in two countries: Argentina and Spain. In the agricultural plots of Spain (1SP to 9SP), two crops were analyzed: winter wheat (Triticum aestivum) and rapeseed (RS, Brassica napus). Two crops were considered in the Argentinean case study: rapeseed (RS, B. napus) and digit grass (Digitaria eriantha) (10AR to 17AR). A bare soil state is considered in both countries as a reference state. Both case studies consider only the agricultural stage in the inventory of a complete life cycle assessment study. Both also consider only one impact category in life cycle environmental assessment: desertification impact due to land occupation.

Results and discussion

On the basis of the obtained results, it can be inferred that cultivating 1 ha of rapeseed and 1 ha of wheat has the same impact on the analyzed plots in Spain and improves the reference state conditions in 50 % of the cases. Moreover, rapeseed grown in Mendoza produces almost the same impact as in some of the Spanish plots. Normalized areas of plots could be useful to compare results in different regions of the world to avoid the influence of the area of occupation in results.

Conclusions

The proposed model implies a contribution of significant importance because so far there has not been an impact assessment tool for land use in dry lands within the LCA framework. The main strength of the proposed model is that it allows a simple way to quantify the desertification impact. Also, it is emphasized that the model can be adapted virtually without difficulty to the evaluation of all types of crops with different management practices in different regions in the life cycle impact assessment stage.  相似文献   

13.

Purpose

Sugarcane bagasse is one of the main agro-industrial residues which can be used to produce wood-based panels. However, more investigations related to its environmental performance assessment are needed, focusing on questions such as: Does it provide environmental benefits? What are its main environmental impacts? Could it substitute wood as raw material? Accordingly, this paper presents a life cycle assessment (LCA) study of particle board manufactured with sugarcane bagasse residues.

Methods

The cradle-to-gate assessment of 1 m3 of particle board made with sugarcane bagasse (PSB) considered three main subsystems: bagasse generation, bagasse distribution, and PSB production. For the inventory of PSB, dataset from two previous LCA studies related to the conventional particle board production and the ethanol life cycle for the Brazilian context were used. The allocation criterion for the bagasse generation subsystem was 9.08 % (economic base). The potential environmental impact phase was assessed by applying the CML and USEtox methods. PSB was compared with the conventional particle board manufactured in Brazil by the categories of the CML and USETox, and including land use indicators. Finally, two scenarios were analyzed to evaluate the influence of the allocation criteria and the consumption of sugarcane bagasse.

Results and discussion

All hotspots identified by CML and USETox methods are mainly related to the PSB production subsystem (24–100 % of impacts) due to heavy fuel oil, electricity, and urea-formaldehyde resin supply chain. The bagasse generation subsystem was more relevant to the eutrophication category (75 % of impacts). The bagasse distribution subsystem was not relevant because the impacts on all categories were lower than 1 %. PSB can substitute the conventional particle board mainly because of its lower contribution to abiotic depletion and ecotoxicity. Regarding land use impacts, PSB showed lower values according to all indicators (38–40 % of all impacts), which is explained by the lower demand for land occupation in comparison to that of the traditional particle board.

Conclusions

PSB can replace the traditional particle board due to its better environmental performance. The analysis of the economic allocation criterion was relevant only for the EP category, being important to reduce diesel and N-based fertilizers use during sugarcane cultivation. Regarding the influence of the sugarcane bagasse consumption, it is suggested that the sugarcane bagasse be mixed up to 75 % during particle board manufacturing so that good quality properties and environmental performance of panels can be provided.  相似文献   

14.
15.

Purpose

The inclusion of land-use activities in life cycle assessment (LCA) has been subject to much debate in the LCA community. Despite the recent methodological developments in this area, the impacts of land occupation and transformation on its long-term ability to produce biomass (referred to here as biotic production potential [BPP]) — an important endpoint for the Area of Protection (AoP) Natural Resources — have been largely excluded from LCAs partly due to the lack of life cycle impact assessment methods.

Materials and methods

Several possible methods/indicators for BPP associated with biomass, carbon balance, soil erosion, salinisation, energy, soil biota and soil organic matter (SOM) were evaluated. The latter indicator was considered the most appropriate for LCA, and characterisation factors for eight land use types at the climate region level were developed.

Results and discussion

Most of the indicators assessed address land-use impacts satisfactorily for land uses that include biotic production of some kind (agriculture or silviculture). However, some fail to address potentially important land use impacts from other life cycle stages, such as those arising from transport. It is shown that the change in soil organic carbon (SOC) can be used as an indicator for impacts on BPP, because SOC relates to a range of soil properties responsible for soil resilience and fertility.

Conclusions

The characterisation factors developed suggest that the proposed approach to characterize land use impacts on BBP, despite its limitations, is both possible and robust. The availability of land-use-specific and biogeographically differentiated data on SOC makes BPP impact assessments operational. The characterisation factors provided allow for the assessment of land-use impacts on BPP, regardless of where they occur thus enabling more complete LCAs of products and services. Existing databases on every country’s terrestrial carbon stocks and land use enable the operability of this method. Furthermore, BPP impacts will be better assessed by this approach as increasingly spatially specific data are available for all geographical regions of the world at a large scale. The characterisation factors developed are applied to the case studies (Part D of this special issue), which show the practical issues related to their implementation.  相似文献   

16.

Purpose

This paper uses a dynamic life cycle assessment (DLCA) approach and illustrates the potential importance of the method using a simplified case study of an institutional building. Previous life cycle assessment (LCA) studies have consistently found that energy consumption in the use phase of a building is dominant in most environmental impact categories. Due to the long life span of buildings and potential for changes in usage patterns over time, a shift toward DLCA has been suggested.

Methods

We define DLCA as an approach to LCA which explicitly incorporates dynamic process modeling in the context of temporal and spatial variations in the surrounding industrial and environmental systems. A simplified mathematical model is used to incorporate dynamic information from the case study building, temporally explicit sources of life cycle inventory data and temporally explicit life cycle impact assessment characterization factors, where available. The DLCA model was evaluated for the historical and projected future environmental impacts of an existing institutional building, with additional scenario development for sensitivity and uncertainty analysis of future impacts.

Results and discussion

Results showed that overall life cycle impacts varied greatly in some categories when compared to static LCA results, generated from the temporal perspective of either the building's initial construction or its recent renovation. From the initial construction perspective, impacts in categories related to criteria air pollutants were reduced by more than 50 % when compared to a static LCA, even though nonrenewable energy use increased by 15 %. Pollution controls were a major reason for these reductions. In the future scenario analysis, the baseline DLCA scenario showed a decrease in all impact categories compared with the static LCA. The outer bounds of the sensitivity analysis varied from slightly higher to strongly lower than the static results, indicating the general robustness of the decline across the scenarios.

Conclusions

These findings support the use of dynamic modeling in life cycle assessment to increase the relevance of results. In some cases, decision making related to building design and operations may be affected by considering the interaction of temporally explicit information in multiple steps of the LCA. The DLCA results suggest that in some cases, changes during a building's lifetime can influence the LCA results to a greater degree than the material and construction phases. Adapting LCA to a more dynamic approach may increase the usefulness of the method in assessing the performance of buildings and other complex systems in the built environment.  相似文献   

17.

Purpose

The production of bioethanol in Argentina is based on the sugarcane plantation system, with extensive use of agricultural land, scarce use of fertilizers, pesticides, and artificial irrigation, and burning of sugarcane prior to harvesting. The objective of this paper is to develop a life cycle assessment (LCA) of the fuel ethanol from sugarcane in Tucumán (Argentina), assessing the environmental impact potentials to identify which of them cause the main impacts.

Methods

Our approach innovatively combined knowledge about the main impact pathways of bioethanol production with LCA which covers the typical emission-related impact categories at the midpoint life cycle impact assessment. Real data from the Argentinean industry subsystems have been used to perform the study: S1—sugarcane production, S2—milling process, S3—sugar production, and S4—ethanol production from molasses, honey, or sugarcane juice.

Results and discussion

The results are shown in the three alternative pathways to produce bioethanol. Different impact categories are assessed, with global warming potential (GWP) having the highest impact. So, the production of 1 kg of ethanol from molasses emitted 22.5 kg CO2 (pathway 1), 19.2 kg CO2 from honey (pathway 2), and 15.0 kg CO2 from sugarcane juice (pathway 3). Several sensitivity analyses to study the variability of the GWP according to the different cases studied have been performed (changing the agricultural yield, including economic and calorific allocation in sugar production, and modifying the sugar price).

Conclusions

Agriculture is the subsystem which shows the highest impact in almost all the categories due to fossil fuel consumption. When an economic and calorific allocation is considered to assess the environmental impact, the value is lower than when mass allocation is used because ethanol is relatively cheaper than sugars and it has higher calorific value.  相似文献   

18.

Background, aim and scope

Freshwater is a basic resource for humans; however, its link to human health is seldom related to lack of physical access to sufficient freshwater, but rather to poor distribution and access to safe water supplies. On the other hand, freshwater availability for aquatic ecosystems is often reduced due to competition with human uses, potentially leading to impacts on ecosystem quality. This paper summarises how this specific resource use can be dealt with in life cycle analysis (LCA).

Main features

The main quantifiable impact pathways linking freshwater use to the available supply are identified, leading to definition of the flows requiring quantification in the life cycle inventory (LCI).

Results

The LCI needs to distinguish between and quantify evaporative and non-evaporative uses of ‘blue’ and ‘green’ water, along with land use changes leading to changes in the availability of freshwater. Suitable indicators are suggested for the two main impact pathways [namely freshwater ecosystem impact (FEI) and freshwater depletion (FD)], and operational characterisation factors are provided for a range of countries and situations. For FEI, indicators relating current freshwater use to the available freshwater resources (with and without specific consideration of water ecosystem requirements) are suggested. For FD, the parameters required for evaluation of the commonly used abiotic depletion potentials are explored.

Discussion

An important value judgement when dealing with water use impacts is the omission or consideration of non-evaporative uses of water as impacting ecosystems. We suggest considering only evaporative uses as a default procedure, although more precautionary approaches (e.g. an ‘Egalitarian’ approach) may also include non-evaporative uses. Variation in seasonal river flows is not captured in the approach suggested for FEI, even though abstractions during droughts may have dramatic consequences for ecosystems; this has been considered beyond the scope of LCA.

Conclusions

The approach suggested here improves the representation of impacts associated with freshwater use in LCA. The information required by the approach is generally available to LCA practitioners

Recommendations and perspectives

The widespread use of the approach suggested here will require some development (and consensus) by LCI database developers. Linking the suggested midpoint indicators for FEI to a damage approach will require further analysis of the relationship between FEI indicators and ecosystem health.  相似文献   

19.

Purpose

As a consequence of the multi-functionality of land, the impact assessment of land use in Life Cycle Impact Assessment requires the modelling of several impact pathways covering biodiversity and ecosystem services. To provide consistency amongst these separate impact pathways, general principles for their modelling are provided in this paper. These are refinements to the principles that have already been proposed in publications by the UNEP-SETAC Life Cycle Initiative. In particular, this paper addresses the calculation of land use interventions and land use impacts, the issue of impact reversibility, the spatial and temporal distribution of such impacts and the assessment of absolute or relative ecosystem quality changes. Based on this, we propose a guideline to build methods for land use impact assessment in Life Cycle Assessment (LCA).

Results

Recommendations are given for the development of new characterization models and for which a series of key elements should explicitly be stated, such as the modelled land use impact pathways, the land use/cover typology covered, the level of biogeographical differentiation used for the characterization factors, the reference land use situation used and if relative or absolute quality changes are used to calculate land use impacts. Moreover, for an application of the characterisation factors (CFs) in an LCA study, data collection should be transparent with respect to the data input required from the land use inventory and the regeneration times. Indications on how generic CFs can be used for the background system as well as how spatial-based CFs can be calculated for the foreground system in a specific LCA study and how land use change is to be allocated should be detailed. Finally, it becomes necessary to justify the modelling period for which land use impacts of land transformation and occupation are calculated and how uncertainty is accounted for.

Discussion

The presented guideline is based on a number of assumptions: Discrete land use types are sufficient for an assessment of land use impacts; ecosystem quality remains constant over time of occupation; time and area of occupation are substitutable; transformation time is negligible; regeneration is linear and independent from land use history and landscape configuration; biodiversity and multiple ecosystem services are independent; the ecological impact is linearly increasing with the intervention; and there is no interaction between land use and other drivers such as climate change. These assumptions might influence the results of land use Life Cycle Impact Assessment and need to be critically reflected.

Conclusions and recommendations

In this and the other papers of the special issue, we presented the principles and recommendations for the calculation of land use impacts on biodiversity and ecosystem services on a global scale. In the framework of LCA, they are mainly used for the assessment of land use impacts in the background system. The main areas for further development are the link to regional ecological models running in the foreground system, relative weighting of the ecosystem services midpoints and indirect land use.  相似文献   

20.

Purpose

Recent life cycle assessment studies for vegetable products have identified the agricultural stage as one of the most important contributors to the environmental impacts for these products, while vegetable production systems are characterized by specific but also widely diverse production conditions. In this context, a review aiming at comparing the potential impacts of vegetable products and analyzing the relevance of the methods and data used for the inventory of the farm stage appeared necessary.

Methods

Ten papers published in peer-reviewed scientific journals or ISO-compliant reports were selected. First, a presentation of the selected papers was done to compare the goal and scope and the life cycle inventory data to the related sections in the ILCD Handbook. Second, a quantitative review of input flows and life cycle impact assessment (LCIA) results (global warming, eutrophication, and acidification) was based on a cropping system typology and on a classification per product group. Third, an in-depth analysis of the methods used to estimate field emissions of reactive nitrogen was proposed.

Results and discussion

The heated greenhouse system types showed the greatest global warming potential. The giant bean group showed the greatest acidification and eutrophication potentials per kilogram of product, while the tomato group showed the greatest acidification and eutrophication potentials per unit of area. Main sources of variations for impacts across systems were yields and inputs variations and system expansion rules. Overall, the ability to compare the environmental impact for these diverse vegetable products from cradle-to-harvest was hampered by (1) weaknesses regarding transparency of goal and scope, (2) a lack of representativeness and completeness of data used for the field stage, and (3) heterogeneous and inadequate methods for estimating field emissions. In particular, methods to estimate reactive nitrogen emissions were applied beyond their validity domain.

Conclusions and recommendations

This first attempt at comparing the potential impacts of vegetable products pinpointed several gaps in terms of data and methods to reach representative LCIA results for the field production stage. To better account for the specificities of vegetable cropping systems and improve the overall quality of their LCA studies, our key recommendations were (1) to include systematically phosphorus, water, and pesticide fluxes and characterize associated impacts, such as eutrophication, toxicity, and water deprivation; (2) to better address space and time representativeness for field stage inventory data through better sampling procedures and reporting transparency; and (3) to use best available methods and when possible more mechanistic tools for estimating Nr emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号