首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

2.
The genus Scytalopus is a species-rich and taxonomically complicated component of the Neotropical avian family Rhinocryptidae. Probably because Scytalopus is a superficially uniform assemblage, its monophyly has not been seriously questioned. We investigated phylogenetic relationships of a representative set of species in the genus using nuclear and mitochondrial DNA sequences as well as anatomical data, and provided the first test of its presumed monophyly by including in the analyses its hypothesized closest relatives (the genera Myornis, Eugralla, and Merulaxis) as well as most rhinocryptid genera. We found strong support for the paraphyly of the genus Scytalopus, with the Scytalopus indigoticus species-group forming a clade with Merulaxis. A well-supported clade including the genera Eugralla, Myornis, and the remaining Scytalopus was also recovered. Because these results were recovered independently and with strong support using mitochondrial and nuclear data, and were entirely consistent with anatomical data, we erect a new genus for the S.indigoticus species-group. These findings illustrate the importance of formally testing hypotheses of monophyly even for well-accepted groups of Neotropical birds.  相似文献   

3.
Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)   总被引:1,自引:0,他引:1  
The echimyid rodents are the most diverse group of Neotropical hystricognaths, with approximately 40 extant and fossil genera. Craniodental characters are proposed in order to formulate hypotheses of phylogenetic relationships within the Echimyidae. A data matrix of 54 taxa and 50 characters is constructed and submitted to parsimony analyses using PAUP and WinClada programs. Analysis of the complete data set results in 47 448 most parsimonious trees 107 steps long. These trees are summarized in a strict consensus tree, which is taken as the main phylogenetic hypothesis resulting from this study. The monophyly of several currently recognized supraspecific taxa is not corroborated. These are: the subfamilies Eumysopinae, Echimyinae, Myocastorinae and Adelphomyinae; and the genera Proechimys , Echimys and Makalata . Conversely, the monophyly of Dactylomyinae and Trinomys is supported. New associations are proposed: (1) a clade comprising the extant Carterodon , Clyomys and Euryzygomatomys and the fossil Pampamys and Theridomysops placed at the base of the crown-group Echimyidae; (2) a clade uniting Proechimys , Hoplomys and Trinomys , which is the sister-taxon of (3) a clade including Mesomys , Lonchothrix , Myocastor and a clade with extant dactylomyines and echimyines and associated fossil taxa. Based on this phylogenetic hypothesis, patterns of tooth evolution in Echimyidae are discussed, and minimum ages for the divergence events within the family are estimated.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 142 , 445–477.  相似文献   

4.
Phylogenetic relationships within the family Alestidae were investigated using parsimony, maximum likelihood, and Bayesian approaches based on a molecular dataset that included both nuclear and mitochondrial markers. Multiple representatives of all but two of the recognized alestid genera were included, which allowed for testing previous hypotheses of intergeneric relationships and the monophyly of several genera. The phylogenetic position of the Neotropical genus Chalceus with respect to the family Alestidae was also examined. In order to understand the temporal context of alestid diversification, Bayesian methods of divergence time estimation using fossil data in the form of calibration priors were used to date the nodes of the phylogenetic tree. Our results rejected the monophyly of the family as currently recognized (Alestidae sensu lato) and revealed several instances of poly- and paraphyly among genera. The genus Chalceus was recovered well nested within Neotropical characiforms, thus rejecting the hypothesis that this taxon is the most basal alestid. The estimated mean divergence time for the alestid clade (Alestidae sensu stricto) was 54 Mya with a 95% credibility interval of 63-49 Mya. These results are incongruent with the hypothesis that the origin of the family Alestidae predates the African-South American Drift-Vicariance event.  相似文献   

5.
The avian family Accipitridae has historically been divided into subfamilies or tribes based on features such as general resemblance, feeding ecology, and behavior. Consequently, the monophyly of those groups has been questionable. Recently, three phylogenetic analyses of a majority of the genera have appeared, one based on osteology, one on DNA sequences from a single mitochondrial gene, and the third on mitochondrial plus nuclear DNA sequences, and the resulting phylogenies were in substantial disagreement concerning the composition and basal branching patterns of the clades and hence require further analysis and confirmation. Here we use DNA sequences from the large nuclear RAG-1 exon to investigate the phylogenetic relationships of these birds. Our results largely corroborated the prior study that included nuclear genes. We found strong support for a monophyletic clade comprising the secretarybird Sagittarius serpentarius , the osprey Pandion haliaetus , and the traditional accipitrids. However, every one of the traditionally recognized subfamilies of accipitrids was found to be polyphyletic. The most basal nodes in the phylogeny separate small clades of insectivorous and scavenger species, such as kites and Old World vultures, from the rest of the family. The speciose genera of bird and mammal predators are all relatively derived (terminal) in the phylogeny. Many of the basal clades are cosmopolitan in their distributions, consistent with the great mobility of these raptors. A new classification is proposed that eliminates the problem of polyphyletic intrafamilial taxa.  相似文献   

6.
The availability of standard protocols to obtain DNA sequences has allowed the inference of phylogenetic Hypotheses for many taxa, including moths. We here have inferred a phylogeny using maximum‐Likelihood and Bayesian approaches for a species‐rich group of moths (Erebidae, Arctiinae), with strong emphasis on Neotropical genera collected in different field campaigns in the Atlantic Forest of Brazil, eastern Amazon and southern Ecuador. A total of 277 species belonging to 246 genera were included in the analysis. Our main objectives were to shed light on the relationships between suprageneric groups, especially subtribes, and hypothesize colonization events in and out of the Neotropics. The monophyly of Arctiinae and its four tribes (Lithosiini, Amerilini, Syntomini and Arctiini) was recovered in the ML and Bayesian trees. Three Lithosiini subtribes previously found and two additional species groups were recovered monophyletic in both phylogenetic estimation methods. In Arctiini, the monophyly of Spilosomina and Arctiina was highly supported in the ML and Bayesian trees, but the monophyly of Ctenuchina and Echromiina was weakly supported in the ML tree and absent in the Bayesian tree; the remaining subtribes were paraphyletic and, in the case of Phageopterina, formed several species groups. The mapping of species occurrence in our ML tree suggests that Arctiinae have an Old World origin and that the Neotropical region was colonized at least six times independently. Our analysis also suggests that a number of species that occur in Neotropical and other zoogeographic regions may have originated in the Neotropics, although further taxon sampling is required to support this hypothesis. To our knowledge, this is the first time that a highly speciose group of tropical moths is well covered in a phylogeny, and it seems plausible that the results reported here may be extendable to other species‐rich tropical undersampled moth taxa.  相似文献   

7.
The high-level classification of Chrysomelidae (leaf beetles) currently recognizes 12 or 13 well-established subfamilies, but the phylogenetic relationships among them remain ambiguous. Full mitochondrial genomes were newly generated for 27 taxa and combined with existing GenBank data to provide a dataset of 108 mitochondrial genomes covering all subfamilies. Phylogenetic analysis under maximum likelihood and Bayesian inference recovered the monophyly of all subfamilies, except that Timarcha was split from Chrysomelinae in some analyses. Three previously recognized major clades of Chrysomelidae were broadly supported: the ‘chrysomeline’ clade consisting of (Chrysomelinae (Galerucinae + Alticinae)); the ‘sagrine’ clade with internal relationships of ((Bruchinae + Sagrinae) + (Criocerinae + Donaciinae)), and the ‘eumolpine’ clade comprising (Spilopyrinae (Cassidinae (Eumolpinae (Cryptocephalinae + Lamprosomatinae)))). Relationships among these clades differed between data treatments and phylogenetic algorithms, and were complicated by two additional deep lineages, Timarcha and Synetinae. Various topological tests favoured the PhyloBayes software as the preferred inference method, resulting in the arrangement of (chrysomelines (eumolpines + sagrines)), with Timarcha placed as sister to the chrysomeline clade and Synetinae as a deep lineage splitting near the base. Whereas mitogenomes provide a solid framework for the phylogeny of Chrysomelidae, the basal relationships do not agree with the topology of existing molecular studies and remain one of the most difficult problems of Chrysomelidae phylogenetics.  相似文献   

8.
The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA).  相似文献   

9.
Ants are one of the most ecologically and numerically dominant families of organisms in almost every terrestrial habitat throughout the world, though they include only about 1% of all described insect species. The development of eusociality is thought to have been a driving force in the striking diversification and dominance of this group, yet we know little about the evolution of the major lineages of ants and have been unable to clearly determine their primitive characteristics. Ants within the subfamily Amblyoponinae are specialized arthropod predators, possess many anatomically and behaviorally primitive characters and have been proposed as a possible basal lineage within the ants. We investigate the phylogenetic relationships among the members of the subfamily, using nuclear 28S rDNA sequence data. Outgroups for the analysis include members of the poneromorph and leptanillomorph (Apomyrma, Leptanilla) ant subfamilies, as well as three wasp families. Parsimony, maximum likelihood, and Bayesian analyses provide strong support for the monophyly of a clade containing the two genera Apomyrma+Mystrium (100% bpp; 97% ML bs; and 97% MP bs), and moderate support for the monophyly of the Amblyoponinae as long as Apomyrma (Apomyrminae) is included (87% bpp; 57% ML bs; and 76% MP bs). Analyses did not recover evidence of monophyly of the Amblyopone genus, while the monophyly of the other genera in the subfamily is supported. Based on these results we provide a morphological diagnosis of the Amblyoponinae that includes Apomyrma. Among the outgroup taxa, Typhlomyrmex grouped consistently with Ectatomma, supporting the recent placement of Typhlomyrmex in the Ectatomminae. The results of this present study place the included ant subfamilies into roughly two clades with the basal placement of Leptanilla unclear. One clade contains all the Amblyoponinae (including Apomyrma), Ponerinae, and Proceratiinae (Poneroid clade). The other clade contains members from subfamilies Cerapachyinae, Dolichoderinae, Ectatomminae, Formicinae, Myrmeciinae, and Myrmicinae (Formicoid clade).  相似文献   

10.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

11.
Previous hypotheses of phylogenetic relationships among Neotropical parrots were based on limited taxon sampling and lacked support for most internal nodes. In this study we increased the number of taxa (29 species belonging to 25 of the 30 genera) and gene sequences (6388 base pairs of RAG-1, cyt b, NADH2, ATPase 6, ATPase 8, COIII, 12S rDNA, and 16S rDNA) to obtain a stronger molecular phylogenetic hypothesis for this group of birds. Analyses of the combined gene sequences using maximum likelihood and Bayesian methods resulted in a well-supported phylogeny and indicated that amazons and allies are a sister clade to macaws, conures, and relatives, and these two clades are in turn a sister group to parrotlets. Key morphological and behavioral characters used in previous classifications were mapped on the molecular tree and were phylogenetically uninformative. We estimated divergence times of taxa using the molecular tree and Bayesian and penalized likelihood methods that allow for rate variation in DNA substitutions among sites and taxa. Our estimates suggest that the Neotropical parrots shared a common ancestor with Australian parrots 59 Mya (million of years ago; 95% credibility interval (CrI) 66, 51 Mya), well before Australia separated from Antarctica and South America, implying that ancestral parrots were widespread in Gondwanaland. Thus, the divergence of Australian and Neotropical parrots could be attributed to vicariance. The three major clades of Neotropical parrots originated about 50 Mya (95% CrI 57, 41 Mya), coinciding with periods of higher sea level when both Antarctica and South America were fragmented with transcontinental seaways, and likely isolated the ancestors of modern Neotropical parrots in different regions in these continents. The correspondence between major paleoenvironmental changes in South America and the diversification of genera in the clade of amazons and allies between 46 and 16 Mya suggests they diversified exclusively in South America. Conversely, ancestors of parrotlets and of macaws, conures, and allies may have been isolated in Antarctica and/or the southern cone of South America, and only dispersed out of these southern regions when climate cooled and Antarctica became ice-encrusted about 35 Mya. The subsequent radiation of macaws and their allies in South America beginning about 28 Mya (95% CrI 22, 35 Mya) coincides with the uplift of the Andes and the subsequent formation of dry, open grassland habitats that would have facilitated ecological speciation via niche expansion from forested habitats.  相似文献   

12.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

13.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

14.
Abstract Leptophlebiidae is among the largest and most diverse groups of extant mayflies (Ephemeroptera), but little is known of family‐level phylogenetic relationships. Using two nuclear genes (the D2 + D3 region of 28S ribosomal DNA and histone H3) and maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI), we inferred the evolutionary relationships of 69 leptophlebiids sampled from six continents and representing 30 genera plus 11 taxa of uncertain taxonomic rank from Madagascar and Papua New Guinea. Although we did not recover monophyly of the Leptophlebiidae, monophyly of two of the three leptophlebiid subfamilies, Habrophlebiinae and Leptophlebiinae, was recovered with moderate to strong support in most analyses. The Atalophlebiinae was rendered paraphyletic as a result of the inclusion of members of Ephemerellidae or the Leptophlebiinae clade. For the species‐rich Atalophlebiinae, four groups of taxa were recovered with moderate to strong branch support: (i) an endemic Malagasy clade, (ii) a Paleoaustral group, a pan‐continental cluster with members drawn from across the southern hemisphere, (iii) a group, uniting fauna from North America, southeast Asia and Madagascar, which we call the Choroterpes group and (iv) a group uniting three New World genera, Thraulodes, Farrodes and Traverella. Knowledge of the phylogenetic relationships of the leptophlebiids will aid in future studies of morphological evolution and biogeographical patterns in this highly diverse and speciose family of mayflies.  相似文献   

15.
Cytochrome b and Bayesian inference of whale phylogeny   总被引:2,自引:0,他引:2  
In the mid 1990s cytochrome b and other mitochondrial DNA data reinvigorated cetacean phylogenetics by proposing many novel and provocative hypotheses of cetacean relationships. These results sparked a revision and reanalysis of morphological datasets, and the collection of new nuclear DNA data from numerous loci. Some of the most controversial mitochondrial hypotheses have now become benchmark clades, corroborated with nuclear DNA and morphological data; others have been resolved in favor of more traditional views. That major conflicts in cetacean phylogeny are disappearing is encouraging. However, most recent papers aim specifically to resolve higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve lower-level relationships. No molecular study to date has included more than 33 cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary studies. Until more genes are available for a high number of taxa, can we rely on readily available single gene mitochondrial data? Here, we estimate the phylogeny of 66 cetacean taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian phylogenetic analysis recovered all benchmark clades and for the first time supported Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The results recover the monophyly of all but one family level taxa within Cetacea, and most recently proposed super- and subfamilies. In contrast, parsimony never recovered all benchmark clades and was sensitive to a priori weighting decisions. These results provide the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian methodology in general, and of Cytb in cetacean phylogenetics. They furthermore suggest that dense taxon sampling, like dense character sampling, can overcome problems in phylogenetic reconstruction.  相似文献   

16.
17.
? Premise of the study: The subfamily Panicoideae (Poaceae) encompasses nearly one-third of the diversity of grass species, including important crops such as maize and sugarcane. Previous analyses recovered strong support for a Panicoideae+Centothecoideae lineage within the diverse Panicoideae+Arundinoideae+Chloridoideae+Micrairoideae+Aristidoideae+Danthonioideae (PACMAD) clade, although support for internal relationships was inconsistent. The objectives of this research were to (1) further test the monophyly of each subfamily and previously recovered clades within the Panicoideae+Centothecoideae lineage, (2) establish phylogenetic relationships among these groups, and (3) propose a new tribal classification for this lineage based explicitly on the phylogeny. ? Methods: Maximum parsimony and Bayesian inference analyses of 37 taxa were based on previously published sequences (ndhF and rpl16 intron) and on new plastid and nuclear (rbcL and granule-bound starch synthase I) sequence data as well as structural data. ? Key results. The Panicoideae+Centothecoideae lineage and a majority of the clades identified in previous analyses continue to be robustly supported, but resolution along the backbone of the topology remains elusive. Support for the monophyly of both subfamilies was lacking although support values for some clades increased. The tribes Centotheceae and Arundinelleae were confirmed as polyphyletic. ? Conclusions: Subfamily Centothecoideae is formally submerged into the Panicoideae, and a new tribal classification for the expanded Panicoideae is proposed based explicitly on the phylogeny. This classification includes 12 tribes of which Chasmanthieae and Zeugiteae are segretated from the Centotheceae; Tristachyideae is segregated from Arundinelleae, and a new tribe, Cyperochloeae, is validated to accommodate two isolated genera. A key to the tribes is provided.  相似文献   

18.
Planorbid gastropods are the most diverse group of limnic pulmonates, with both discoidal and highspired taxa. Phylogenetic relationships among these genera are confused and controversial. In particular, the monophyly of the limpet‐like taxa (traditionally Ancylidae) is disputed. Even recent molecular studies have concluded that substantially more work is necessary to solve the remaining issues concerning intergeneric phylogenetic relationships and higher taxa systematics. Planorbid snails are of great significance for humans as several members of this group are intermediate hosts of blood flukes (schistosomes) causing a chronic disease, schistosomiasis. We used the two independent molecular markers COI and 18S (concatenated dataset of 2837 nucleotide bp) to infer phylogenetic relationships of 26 genera (27 species) of Planorboidea, represented mostly by type species from mainly topotypical populations. With the majority of the taxa discussed not having been studied previously, this study attempted to test several hypotheses on planorbid phylogenetic relationships using Bayesian inference techniques. The monophyly of Planorboidea (= ‘Ancyloplanorbidae’) is strongly suggested on the basis of our extensive molecular analysis. Besides a distinct Burnupia clade, two major clades were recovered that correspond to family level taxa (traditional Bulinidae and Planorbidae). Considerable rearrangements of suprageneric taxa are evident from the phylogeny inferred. Therefore, the only clades recognized by current classifications and supported by our analysis are Planorbini and Segmentinini. The present study found that Ancylidae as traditionally understood, i.e. covering most freshwater limpet gastropods, is paraphyletic, as the genera of Burnupia and Protancylus have been shown to lie phylogenetically outside the Ancylini. Chromosome numbers and levels of polyploidy are discussed in the light of the new phylogeny. An earlier theory of shell shape evolution, i.e. that of patelliform taxa being most advanced, was not supported by this study; a limpet‐shaped taxon is most basal within Planorboidea. Although many taxa still remain to be studied, our results will hopefully contribute towards a better understanding of this very important group of freshwater organisms. Some taxonomic implications are discussed.  相似文献   

19.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

20.
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号