首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

2.
粪产碱菌的Tn5转座诱变及吲哚乙酸生物合成特性的研究   总被引:5,自引:0,他引:5  
粪产碱菌(Alcaligenes faecalis)A1501的吲哚乙酸(IAA)合成需要外源色氨酸参与。在不含色氨酸的限制性培养基中,A1501能良好生长,但不能合成IAA,表明在A1501中存在一条依赖于色氨酸的IAA合成途径。A1501的IAA合成具有菌体密度依赖特性。采用Tn5转座诱变技术构建A1501的突变库,从3500多株Tn5转染子中分离到一株色氨酸营养缺陷型突变株AT63。该Tn5突变株在不含色氨酸的限制性培养基上不能生长,但仍能进行IAA的生物合成,每毫升菌体密度等于10的突变株菌体的IAA合成量为224μg。对突变株AT63的研究表明在A1501中至少存在两条IAA合成途径:一条以色氨酸为合成前体,另一条以吲哚-3-磷酸甘油为前体。Southern杂交结果表明突变株中Tn5插入位点可能位于编码色氨酸合成酶基因上。  相似文献   

3.
拟南芥色氨酸与吲哚乙酸生物合成的研究进展   总被引:3,自引:0,他引:3  
拟南芥色氨酸生物合成途径的研究已逐成为植物分析生物学家了解植物基因结构和表达调控最主要的模式系统之一。到目前为止,编码拟南芥色氨酸合成途径的七种酶蛋白的基因已经全部被克隆,并进行了不同程度的分子生物学研究。长期以来,色氨酸一直被认为是生长素吲哚乙酸乙酸(IAA)生物合成(从头合成)的前体物,但近年来人们发现生长素的非色氨酸途径可能是其在植物中生物合成的主要途径,植物在不同的发育阶段可能采用不同的方  相似文献   

4.
拟南芥色氨酸与吲哚乙酸生物合成的研究进展   总被引:1,自引:0,他引:1  
拟南芥色氨酸生物合成途径的研究已逐渐成为植物分子生物学家了解植物基因结构和表达调控最主要的模式系统之一。到目前为止,编码拟南芥色氨酸合成途径的七种酶蛋白的基因已经全部被克隆,并进行了不同程度的分子生物学研究。长期以来,色氨酸一直被认为是植物生长素吲哚乙酸(IAA)生物合成(从头合成)的前体物,但近年来人们发现生长素合成的非色氨酸途径可能是其在植物中生物合成的主要途径。植物在不同的发育阶段可能采用不同的方式合成IAA。  相似文献   

5.
中药大青叶是菘蓝的干燥叶片,主要活性物质为吲哚类化合物,包括靛蓝、靛玉红、色胺酮等,以上吲哚类化合物的生物合成起始于色氨酸途径,目前在植物中的合成机制还未完全阐明.本研究以成熟菘蓝叶片为研究对象,对茉莉酸甲酯诱导的叶片进行了转录组分析,对已知途径进行了转录组注释,并对未解析途径进行了预测分析.分别获得了色氨酸代谢途径中色氨酸、吲哚乙酸、吲哚苷和萜类吲哚生物碱合成几个代谢支路中16个催化步骤的38个编码基因.通过共表达网络分析,预测转录因子bHLH125可能对吲哚途径具有核心调控作用;CYP2A6-1和CYP735A2等蛋白可能催化生成靛蓝、靛玉红、色胺酮前体的羟基化反应,对这两个蛋白与底物分子的结合进行分子对接建模,均显示对吲哚分子具有较好的结合力.本研究为后续开展菘蓝代谢调控和育种,以及开展吲哚类物质合成生物学研究提供候选基因.  相似文献   

6.
生长素在调节植物生长和抗重金属胁迫中具有重要作用。重金属胁迫下植物为维持自身生长,必须维持生长素的内稳态和自身代谢平衡。生长素的内稳态受到生物合成、生长素结合以及水解、代谢失活等生理活动的严格控制。一些涉及生长素合成与分解的相关酶系和基因已被识别或克隆,然而重金属胁迫下与生长素合成与分解有关基因的上调或下调以及相关酶系的激活或失活却研究尚少。揭示植物遭受重金属胁迫后生长素合成与分解变化的机理,可为植物修复实践中合理使用植物生长调节剂提供理论依据。本文以生长素的主要代表物吲哚乙酸(IAA)为例,讨论重金属胁迫下,植物体内IAA合成、分解机制及其赋存形态等方面的研究进展,并从重金属胁迫下植物IAA合成途径的相对重要性、IAA形态变化和作用以及激素间的交互作用等方面探讨了该领域的研究方向。  相似文献   

7.
目的:利用重组大肠杆菌全细胞转化色氨酸生产IAA。方法:在大肠杆菌胞内构建两条全新的IAA合成途径,即吲哚-3-乙酰胺(indole-3-acetamide,IAM)途径和色胺(tryptamine,TRP)途径。结果:IAM途径涉及两个酶,分别是色氨酸-2-单加氧酶(IAAM)和酰胺酶(AMI1),构建好的重组大肠杆菌TPA-4以2g/L的色氨酸为底物,可以产生0.803g/L的IAA;敲除控制色氨酸合成副产物吲哚的tnaA基因后,菌株MPA-3的IAA产量达到1.43g/L,提高了78%。第二条TRP途径合成IAA涉及三个酶:左旋色氨酸脱羧酶(TDC),二胺氧化酶(AOC1)和吲哚-3-乙醛脱氢酶(IAD1)。包含这条途径的重组大肠杆菌TPTA-2以2g/L的色氨酸为底物能够合成13.0mg/L的IAA。在菌株MPTA-3中,最终产生了21.0mg/L的IAA,产量增加了61.5%。结论:首次通过IAM途径和TRP途径利用重组大肠杆菌全细胞催化生产IAA,其中IAM途径的IAA产量较高,有较高的工业化应用前景。  相似文献   

8.
【背景】前期结果表明,DDT降解菌株Chryseobacterium sp. PYR2可高效去除土壤中的DDT等污染物,具有潜在的应用价值,但该菌对植物的影响尚不清楚。【目的】探讨菌株Chryseobacterium sp. PYR2对植物的促生作用及其机理,为后续开发DDT降解及植物促生双效功能菌剂提供理论依据。【方法】配制该菌株的不同梯度稀释菌悬液,用纸卷发芽法和盆栽法研究菌悬液对小麦种子萌发和植株生长的影响;Salkowski法测定PYR2合成吲哚-3-乙酸(Indole-3-acetic acid,IAA)量;单因素实验研究不同培养条件对菌株生长及IAA合成的影响;液相色谱-串联质谱-多反应监测(LC-MS/MS-MRM)方法分析IAA在PYR2菌体内的生物合成途径。【结果】PYR2菌悬液可明显提高小麦种子萌发率并促进小麦植株的生长,小麦的侧根数、株高、鲜重、干重等指标均明显提高。该作用是由于菌株PYR2可以合成植物生长激素IAA。最适IAA合成条件:温度30°C,pH 7.0-8.0,盐浓度0.5%,L-色氨酸50mg/L。代谢液中检测到色醇、色胺和吲哚-3-乙酰胺3种中间代谢产物,推测PYR2体内存在3条IAA合成途径,分别为吲哚-3-丙酮酸(IPy A)、TAM和IAM途径。【结论】菌株PYR2对小麦具有明显的促生效果,是由于其具有多条高效合成IAA的代谢途径,表明其在农药污染土壤的生物修复及作物种植中具有潜在的应用前景。  相似文献   

9.
曾秀丽  王志  罗利  王旭  陈宣钦  周育 《微生物学报》2020,60(10):2198-2210
【目的】以紫娟茶树分离的内生菌水生草螺菌ZXN111为研究对象,通过分子遗传学方法证实该菌株植物生长素吲哚3-乙酸(IAA)合成的主要分子途径。【方法】参考草螺菌基因组信息中IAA合成基因簇,选取与IAA合成密切相关的候选基因,即芳香族氨基酸转氨酶基因(tyrb),通过基因插入突变与基因互补方法,结合茶树组培苗体内促生能力分析,初步验证水生草螺菌生长素合成的主要机制。【结果】植物生长素IAA合成候选基因tyrb突变后,突变株tyrb::pK19mobΩ2HMB 48 h的IAA合成量显著低于野生型菌株ZXN111,且tyrb基因互补后,互补株tyrb::pK19mobΩ2HMB(+)的IAA合成能力得到了显著恢复。茶树促生实验发现,突变株tyrb::pK19mobΩ2HMB接种组的茶树组培苗根长、根重及植株鲜重指标上均显著低于野生菌处理组。【结论】水生草螺菌ZXN111有多条IAA合成途径,其中的吲哚-3-丙酮酸(IPA)是最主要途径,其生长素合成对寄主茶树具有显著的促生功能。  相似文献   

10.
本文以绿豆子叶为材料研究了切伤、外源萘乙酸及激动素诱导形成愈伤组织的作用及其与内源色氨酸和吲哚乙酸生物合成的关系。实验结果表明,切伤对于愈伤组织的形成具有重要作用,切伤面积的大小与愈伤组织的增殖成正比。在绿豆子叶愈伤组织形成的初期,游离色氨酸和内源吲哚乙酸的水平均降低,而在后期,组织内部游离色氨酸和吲哚乙酸的含量都有增加。在培养基中加入外源色氨酸可以部分代替萘乙酸促进愈伤组织的形成。可以认为,外源激素诱导愈伤组织的形成是通过促进内源色氨酸和内源吲哚乙酸的生物合成而实现的。受伤对愈伤组织的形成也起了重要的协同作用。  相似文献   

11.
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.  相似文献   

12.
The auxin indole-3-acetic acid (IAA), which is essential for plant growth and development, is suggested to be synthesized via several redundant pathways. In maize (Zea mays), the nitrilase ZmNIT2 is expressed in auxin-synthesizing tissues and efficiently hydrolyses indole-3-acetonitrile to IAA. Zmnit2 transposon insertion mutants were compromised in root growth in young seedlings and sensitivity to indole-3-acetonitrile, and accumulated lower quantities of IAA conjugates in kernels and root tips, suggesting a substantial contribution of ZmNIT2 to total IAA biosynthesis in maize. An additional enzymatic function, turnover of beta-cyanoalanine, is acquired when ZmNIT2 forms heteromers with the homologue ZmNIT1. In plants carrying an insertion mutation in either nitrilase gene this activity was strongly reduced. A dual role for ZmNIT2 in auxin biosynthesis and in cyanide detoxification as a heteromer with ZmNIT1 is therefore proposed.  相似文献   

13.
For the biosynthesis of the phytohormone indole-3-acetic acid (IAA), a number of tryptophan-dependent and -independent pathways have been discussed. Maize is an appropriate model system to analyze IAA biosynthesis particularly because high quantities of IAA conjugates are stored in the endosperm. This allowed precursor feeding experiments in a kernel culture system followed by retrobiosynthetic NMR analysis, which strongly suggested that tryptophan-dependent IAA synthesis is the predominant route for auxin biosynthesis in the maize kernel. Two nitrilases ZmNIT1 and ZmNIT2 are expressed in seeds. ZmNIT2 efficiently hydrolyzes indole-3-acetonitrile (IAN) to IAA and thus could be involved in auxin biosynthesis. Redundant pathways, e.g., via indole-3-acetaldehyde could imply that multiple mutants will be necessary to obtain IAA-deficient plants and to conclusively identify relevant genes for IAA biosynthesis.  相似文献   

14.
The regulation of cellular auxin levels is a critical factor in determining plant growth and architecture, as indole-3-acetic acid (IAA) gradients along the plant axis and local IAA maxima are known to initiate numerous plant growth responses. The regulation of auxin homeostasis is mediated in part by transport, conjugation and deconjugation, as well as by de novo biosynthesis. However, the pathways of IAA biosynthesis are yet not entirely characterized at the molecular and biochemical level. It is suggested that several biosynthetic routes for the formation of IAA have evolved. One such pathway proceeds via the intermediate indole-3-acetamide (IAM), which is converted into IAA by the activity of specific IAM hydrolases, such as Arabidopsis AMIDASE1 (AMI1). In this article we present evidence to support the argument that AMI1-dependent IAA synthesis is likely not to be used during the first two days of seedling development.Key words: Arabidopsis thaliana, auxin biosynthesis, AMIDASE1, indole-3-acetic acid, indole-3-acetamide, LEAFY COTYLEDON1, seed developmentAuxins are versatile plant hormones that play diverse roles in regulating many aspects of plant growth and development.1 To enable auxins to develop their activity, a tight spatiotemporal control of cellular indole-3-acetic acid (IAA) contents is absolutely necessary since it is well-documented that auxin action is dose dependent, and that high IAA levels can have inhibitory effects on plant growth.2 To achieve this goal, plants have evolved a set of different mechanisms to control cellular hormone levels. On the one hand, plants possess several pathways that contribute to the de novo synthesis of IAA. This multiplicity of biosynthetic routes presumably facilitates fine-tuning of the IAA production. On the other hand, plants are equipped with a variety of enzymes that are used to conjugate free auxin to either sugars, amino acids or peptides and small proteins, respectively, or on the contrary, that act as IAA-conjugate hydrolases, releasing free IAA from corresponding conjugates. IAA-conjugates serve as a physiologically inactive storage form of IAA from which the active hormone can be quickly released on demand. Alternatively, conjugation of IAA can mark the first step of IAA catabolism. In general, conjugation and deconjugation of free IAA are ways to positively or negatively affect active hormone levels, which adds another level of complexity to the system. Additionally, IAA can be transported from cell to cell in a polar manner, which is dependent on the action of several transport proteins. All together, these means are used to form auxin gradients and local maxima that are essential to initiate plant growth processes, such as root or leaf primordia formation.3  相似文献   

15.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

16.
Auxin is an important plant hormone essential for many aspects of plant growth and development. Indole-3-acetic acid (IAA) is the most studied auxin in plants, and its biosynthesis pathway has been investigated for over 70 years. Although the complete picture of auxin biosynthesis remains to be elucidated, remarkable progress has been made recently in understanding the mechanism of IAA biosynthesis. Genetic and biochemical studies demonstrate that IAA is mainly synthesized from l-tryptophan (Trp) via indole-3-pyruvate by two-step reactions in Arabidopsis. While IAA is also produced from Trp via indole-3-acetaldoxime in Arabidopsis, this pathway likely plays an auxiliary role in plants of the family Brassicaceae. Recent studies suggest that the Trp-independent pathway is not a major route for IAA biosynthesis, but they reveal an important role for a cytosolic indole synthase in this pathway. In this review, I summarize current views and future prospects of IAA biosynthesis research in plants.  相似文献   

17.
Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology.  相似文献   

18.
Indole-3-acetic acid in microbial and microorganism-plant signaling   总被引:14,自引:0,他引:14  
Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.  相似文献   

19.
Previously we identified aminooxy compounds as auxin biosynthesis inhibitors. One of the compounds, aminooxyacetic acid (AOA) inhibited indole-3-acetic acid (IAA) biosynthesis in rice and tomato. Here, we found that AOA induced auxin over-accumulation in Arabidopsis. The results suggest that auxin-related metabolic pathways are divergent among these plant species.  相似文献   

20.
The phytohormone indole-3-acetic acid (IAA) plays a vital role in plant growth and development as a regulator of numerous biological processes. Its biosynthetic pathways have been studied for decades. Recent genetic and in vitro labeling evidence indicates that IAA in Arabidopsis thaliana and other plants is primarily synthesized from a precursor that is an intermediate in the tryptophan (Trp) biosynthetic pathway. To determine which intermediate(s) acts as the possible branchpoint for the Trp-independent IAA biosynthesis in plants, we took an in vivo approach by generating antisense indole-3-glycerol phosphate synthase (IGS) RNA transgenic plants and using available Arabidopsis Trp biosynthetic pathway mutants trp2-1 and trp3-1. Antisense transgenic plants display some auxin deficient-like phenotypes including small rosettes and reduced fertility. Protein gel blot analysis indicated that IGS expression was greatly reduced in the antisense lines. Quantitative analyses of IAA and Trp content in antisense IGS transgenic plants and Trp biosynthetic mutants revealed striking differences. Compared with wild-type plants, the Trp content in all the transgenic and mutant plants decreased significantly. However, total IAA levels were significantly decreased in antisense IGS transgenic plants, but remarkably increased in trp3-1 and trp2-1 plants. These results suggest that indole-3-glycerol phosphate (IGP) in the Arabidopsis Trp biosynthetic pathway serves as a branchpoint compound in the Trp-independent IAA de novo biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号