首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
干旱区胡杨光合作用对高温和CO2浓度的响应   总被引:6,自引:0,他引:6  
采用LI-6400便携式光合作用测定仪实测的塔里木河下游胡杨(Populus euphratica oliv)光合作用参数,探讨了不同地下水埋深下的胡杨光合作用对CO2浓度增加和温度升高的响应.结果表明:(1)CO2浓度升高减小了胡杨气孔导度,促进了光合速率、胞间CO2浓度和水分利用效率的增加,但不同地下水埋深下,胡杨光合作用参数对CO2浓度升高的响应不同,干旱环境(地下水埋深较深)下的响应程度大于水分适宜(地下水埋深浅)环境下的响应;(2) 高温引起胡杨气孔发生不完全关闭,导致了光合作用的光抑制发生,从而降低了胡杨光合速率,但降低程度受水分条件的影响,地下水埋深较深环境下的影响程度大于地下水埋深浅的;(3)地下水埋深是控制干旱区胡杨光合作用对CO2浓度和温度升高的根本因素,6m是胡杨生长正常的临界地下水埋深,地下水埋深>6m,胡杨即遭到水分胁迫,地下水埋深>7m,胡杨即受到了较严重的水分胁迫.  相似文献   

2.
Fourteen genotypes of barley were compared for response to salinity by monitoring the parameters gas exchange and chlorophyll fluorescence. We present relationships between stomatal conductance (gs) gas exchange chlorophyll fluorescence parameters and aboveground dry matter (AGDM). We found that genetic variability provided a continuum of data for gs across control and saline conditions. We used this continuum of gs values to test the overall relationships between gs and net photosynthesis (A), leaf internal CO2 concentration (Ci), actual quantum yield of PSII electron transport (PhiPSII), relative electron yield over net CO2 assimilation rate (ETR/A), and AGDM. The relationship between gs and A was highly significant (P < 0.0001) for both control and saline treatments, while correlations between gs and Ci, and Ci and A were significant only under control conditions. Unexpectedly, we found positive correlations between gs and PhiPSII (P < 0.0001) for both conditions. A comparison between relationships of gs and A, and gs and PhiPSII seemed to indicate a possible acclimation to salinity at the chloroplastic level. Finally, the relationships between gs and ETR/A were exceptionally strong for both growing conditions (P < 0.0001) indicating that, as gs values were negatively affected in barley by genetics and salinity as main or interactive effects, there was a progressive increase in photorespiration in barley. Overall, we found that stomatal conductance was a key parameter in the study of barley responses to limiting situations for photosynthesis. We also found a strong relationship between AGDM and gs regardless of growing conditions and genotypes. For breeding evaluations to select barley genotypes for salinity tolerance, it may be possible to replace all measurements of gas exchange and chlorophyll fluorescence by the simple use of a porometer.  相似文献   

3.
叶肉导度的组成、大小及其对环境因素的响应   总被引:4,自引:0,他引:4  
植物光合作用过程中,大气中的CO2需要克服气孔和叶肉细胞等阻力传输到羧化位点。CO2从气孔下腔传输到羧化位点的阻力称为叶肉阻力,其倒数即为叶肉导度。近十年内,叶肉导度已经成为光合作用研究领域的一个重要方面。本文首先系统地阐述了叶肉导度的组成及各部分所占的比重;然后通过与气孔导度的比较,分析叶肉导度的大小及其对光合作用的影响;最后阐述了叶肉导度对环境变化的响应,并分析了其中可能的原因。  相似文献   

4.
James A. Bunce 《Oecologia》1982,54(2):233-235
Summary It was hypothesized that since sub-stomatal carbon dioxide concentrations are often saturating to photosynthesis at ambient external concentrations in C4 plants at high light, photosynthesis might be insensitive to partial stomatal closure caused by large leaf-air water vapor pressure difference. The response of stomatal conductance and photosynthesis at high irradiance to vapor pressure difference was determined under uniform conditions in C4 plants grown under controlled conditions, and outdoors. In several cases, photosynthesis was less sensitive to stomatal closure than it would have been if photosynthesis had a linear response to sub-stomatal carbon dioxide concentration. No change in photosynthesis at up to 25 mbar vapor pressure difference was demonstrated in the C4 species Portulaca oleracea and Amaranthus hypochondriacus, despite reductions in stomatal conductance of 32 and 17%, respectively. Sensitivity of photosynthesis to leaf-air vapor pressure difference was found to depend on the species and on the growth conditions.  相似文献   

5.
Central paradigms of ecophysiology are that there are recognizable and even explicit and predictable patterns among species, genera, and life forms in the economics of water and nitrogen use in photosynthesis and in carbon isotope discrimination (delta). However most previous examinations have implicitly assumed an infinite internal conductance (gi) and/or that internal conductance scales with the biochemical capacity for photosynthesis. Examination of published data for 54 species and a detailed examination for three well-characterized species--Eucalyptus globulus, Pseudotsuga menziesii and Phaseolus vulgaris--show these assumptions to be incorrect. The reduction in concentration of CO2 between the substomatal cavity (Ci) and the site of carbon fixation (Cc) varies greatly among species. Photosynthesis does not scale perfectly with gi and there is a general trend for plants with low gi to have a larger draw-down from Ci to Cc, further confounding efforts to scale photosynthesis and other attributes with gi. Variation in the gi-photosynthesis relationship contributes to variation in photosynthetic 'use' efficiency of N (PNUE) and water (WUE). Delta is an information-rich signal, but for many species only about two-thirds of this information relates to A/gs with the remaining one-third related to A/gi. Using data for three well-studied species we demonstrate that at common WUE, delta may vary by up to 3 per thousand. This is as large or larger than is commonly reported in many interspecific comparisons of delta, and adds to previous warnings about simplistic interpretations of WUE based on delta. A priority for future research should be elucidation of relationships between gi and gs and how these vary in response to environmental conditions (e.g. soil water, leaf-to-air vapour pressure deficit, temperature) and among species.  相似文献   

6.
Experimental studies on CO2 assimilation of mesophytic C3 plants in relation to relative water content (RWC) are discussed. Decreasing RWC slows the actual rate of photosynthetic CO2 assimilation (A) and decreases the potential rate (Apot). Generally, as RWC falls from c. 100 to c. 75%, the stomatal conductance (gs) decreases, and with it A. However, there are two general types of relation of Apot to RWC, which are called Type 1 and Type 2. Type 1 has two main phases. As RWC decreases from 100 to c. 75%, Apot is unaffected, but decreasing stomatal conductance (gs) results in smaller A, and lower CO2 concentration inside the leaf (Ci) and in the chloroplast (Cc), the latter falling possibly to the compensation point. Down-regulation of electron transport occurs by energy quenching mechanisms, and changes in carbohydrate and nitrogen metabolism are considered acclimatory, caused by low Ci and reversible by elevated CO2. Below 75% RWC, there is metabolic inhibition of Apot, inhibition of A then being partly (but progressively less) reversible by elevated CO2; gs regulates A progressively less, and Ci and CO2 compensation point, Gamma rise. It is suggested that this is the true stress phase, where the decrease in Apot is caused by decreased ATP synthesis and a consequent decreased synthesis of RuBP. In the Type 2 response, Apot decreases progressively at RWC 100 to 75%, with A being progressively less restored to the unstressed value by elevated CO2. Decreased gs leads to a lower Ci and Cc but they probably do not reach compensation point: gs becomes progressively less important and metabolic limitations more important as RWC falls. The primary effect of low RWC on Apot is most probably caused by limited RuBP synthesis, as a result of decreased ATP synthesis, either through inhibition of Coupling Factor activity or amount due to increased ion concentration. Carbohydrate synthesis and accumulation decrease. Type 2 response is considered equivalent to Type 1 at RWC below c. 75%, with Apot inhibited by limited ATP and RuBP synthesis, respiratory metabolism dominates and Ci and Gamma rise. The importance of inhibited ATP synthesis as a primary cause of decreasing Apot is discussed. Factors determining the Type 1 and Type 2 responses are unknown. Electron transport is maintained (but down-regulated) in Types 1 and 2 over a wide range of RWC, and a large reduced/oxidized adenylate ratio results. Metabolic imbalance results in amino acid accumulation and decreased and altered protein synthesis. These conditions profoundly affect cell functions and ultimately cause cell death. Type 1 and 2 responses may reflect differences in gs and in sensitivity of metabolism to decreasing RWC.  相似文献   

7.
Dai Z  Ku M  Edwards GE 《Plant physiology》1993,103(1):83-90
Despite previous reports of no apparent photorespiration in C4 plants based on measurements of gas exchange under 2 versus 21% O2 at varying [CO2], photosynthesis in maize (Zea mays) shows a dual response to varying [O2]. The maximum rate of photosynthesis in maize is dependent on O2 (approximately 10%). This O2 dependence is not related to stomatal conductance, because measurements were made at constant intercellular CO2 concentration (Ci); it may be linked to respiration or pseudocyclic electron flow. At a given Ci, increasing [O2] above 10% inhibits both the rate of photosynthesis, measured under high light, and the maximum quantum yield, measured under limiting light ([phi]CO2). The dual effect of O2 is masked if measurements are made under only 2 versus 21% O2. The inhibition of both photosynthesis and [phi]CO2 by O2 (measured above 10% O2) with decreasing Ci increases in a very similar manner, characteristically of O2 inhibition due to photorespiration. There is a sharp increase in O2 inhibition when the Ci decreases below 50 [mu]bar of CO2. Also, increasing temperature, which favors photorespiration, causes a decrease in [phi]CO2 under limiting CO2 and 40% O2. By comparing the degree of inhibition of photosynthesis in maize with that in the C3 species wheat (Triticum aestivum) at varying Ci, the effectiveness of C4 photosynthesis in concentrating CO2 in the leaf was evaluated. Under high light, 30[deg]C, and atmospheric levels of CO2 (340 [mu]bar), where there is little inhibition of photosynthesis in maize by O2, the estimated level of CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the bundle sheath compartment was 900 [mu]bar, which is about 3 times higher than the value around Rubisco in mesophyll cells of wheat. A high [CO2] is maintained in the bundle sheath compartment in maize until Ci decreases below approximately 100 [mu]bar. The results from these gas exchange measurements indicate that photorespiration occurs in maize but that the rate is low unless the intercellular [CO2] is severely limited by stress.  相似文献   

8.
气孔导度对CO_2浓度变化的模拟及其生理机制   总被引:2,自引:0,他引:2  
王建林  温学发 《生态学报》2010,30(17):4815-4820
基于气孔运动的生理生化机制重点进行了气孔导度(gs)对CO2浓度变化的响应机制分析,并推导得到气孔导度(gs)对CO2浓度变化响应模型,并以9种植物进行了模型验证。结果表明:随着CO2浓度的升高,气孔导度会逐渐降低,且下降的幅度会随着CO2浓度的升高而逐渐减弱。气孔导度对CO2浓度(Cs)变化的响应模型可以表达为gs=gmax/(1+Cs/Cs0),其中式中gmax是最大气孔导度和Cs0是实验常数。该模型较好地模拟了气孔导度随CO2浓度变化的规律,模型参数具有明确的生理意义,与Jarvis模型和Ball-Berry模型相比,该模型如何实现多种环境因子的耦合有待进一步突破。另外,模型是在短期改变叶片CO2浓度的条件下得出的,在CO2浓度长期胁迫下的适用性也有待进一步确认。  相似文献   

9.
Stomatal conductance (gs) typically declines in response to increasing intercellular CO2 concentration (ci). However, the mechanisms underlying this response are not fully understood. Recent work suggests that stomatal responses to ci and red light (RL) are linked to photosynthetic electron transport. We investigated the role of photosynthetic electron transport in the stomatal response to ci in intact leaves of cocklebur (Xanthium strumarium) plants by examining the responses of gs and net CO2 assimilation rate to ci in light and darkness, in the presence and absence of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and at 2% and 21% ambient oxygen. Our results indicate that (1) gs and assimilation rate decline concurrently and with similar spatial patterns in response to DCMU; (2) the response of gs to ci changes slope in concert with the transition from Rubisco- to electron transport-limited photosynthesis at various irradiances and oxygen concentrations; (3) the response of gs to ci is similar in darkness and in DCMU-treated leaves, whereas the response in light in non-DCMU-treated leaves is much larger and has a different shape; (4) the response of gs to ci is insensitive to oxygen in DCMU-treated leaves or in darkness; and (5) stomata respond normally to RL when ci is held constant, indicating the RL response does not require a reduction in ci by mesophyll photosynthesis. Together, these results suggest that part of the stomatal response to ci involves the balance between photosynthetic electron transport and carbon reduction either in the mesophyll or in guard cell chloroplasts.  相似文献   

10.
The measurement of the response of net photosynthesis to leaf internal CO2 (i.e. A-Ci curves) is widely used for ecophysiological studies. Most studies did not consider CO2 exchange between the chamber and the surrounding air, especially at the two extremes of A-Ci curves, where large CO2 gradients are created, leading to erroneous estimations of A and Ci. A quantitative analysis of CO2 leakage in the chamber of a portable open gas exchange system (Li-6400, LI-COR Inc., NE, USA) was performed. In an empty chamber, the measured CO2 leakage was similar to that calculated using the manufacturer's equations. However, in the presence of a photosynthetically inactive leaf, the magnitude of leakage was substantially decreased, although still significant. These results, together with the analysis of the effects of chamber size, tightness, flow rate, and gasket material, suggest that the leakage is larger at the interface between the gaskets than through the gaskets. This differential leakage rate affects the parameterization by photosynthesis models. The magnitude of these errors was assessed in tobacco plants. The results showed that leakage results in a 10% overestimation of the leaf maximum capacity for carboxylation (Vc,max) and a 40% overestimation of day respiration (Rl). Using the manufacturer's equations resulted in larger, non-realistic corrections of the true values. The photosynthetic response to CO2 concentrations at the chloroplast (i.e. A-Cc curves) was significantly less affected by leakage than A-Ci curves. Therefore, photosynthetic parameterization can be improved by: (i) correcting A and Ci values for chamber leakage estimated using a photosynthetically inactive leaf; and (ii) using A-Cc instead of A-Ci curves.  相似文献   

11.
Mesophyll conductance (gm) has received over time much less attention than stomatal conductance (gs), although it affects leaf photosynthesis to about the same extent as stomatal conductance does. The objective of this study was to analyze the gm trend in five understory herbaceous species growing in a close-canopy forest in the north-west of Italy. In particular, three of analyzed species were monocots: Carex brizoides Lam., Carex pilosa Scop., and Oplismenus undulatifolius P. Beauv and the others dicots species: Circaea lutetiana L., and Pulmonaria officinalis Ced. The results showed, on one hand, the absence of correlation between gm and the considered environmental variables in the forest understory (i.e. air temperature, photosynthetic photon flux density and carbon dioxide concentration). Moreover, we carried out a principal component analysis considering all the analyzed morphological and physiological variables for the five species. The following correlation between the first component, related to the leaf mass per unit of leaf area and the leaf tissue density, and gm seem to suggest a key role of the leaf structural features in determining gm variations across the five species.  相似文献   

12.
During photosynthesis, CO2 moves from the atmosphere (C(a)) surrounding the leaf to the sub-stomatal internal cavities (C(i)) through stomata, and from there to the site of carboxylation inside the chloroplast stroma (C(c)) through the leaf mesophyll. The latter CO2 diffusion component is called mesophyll conductance (g(m)), and can be divided in at least three components, that is, conductance through intercellular air spaces (g(ias)), through cell wall (g(w)) and through the liquid phase inside cells (g(liq)). A large body of evidence has accumulated in the past two decades indicating that g(m) is sufficiently small as to significantly decrease C(c) relative to C(i), therefore limiting photosynthesis. Moreover, g(m) is not constant, and it changes among species and in response to environmental factors. In addition, there is now evidence that g(liq) and, in some cases, g(w), are the main determinants of g(m). Mesophyll conductance is very dynamic, changing in response to environmental variables as rapid or even faster than stomatal conductance (i.e. within seconds to minutes). A revision of current knowledge on g(m) is presented. Firstly, a historical perspective is given, highlighting the founding works and methods, followed by a re-examination of the range of variation of g(m) among plant species and functional groups, and a revision of the responses of g(m) to different external (biotic and abiotic) and internal (developmental, structural and metabolic) factors. The possible physiological bases for g(m), including aquaporins and carbonic anhydrases, are discussed. Possible ecological implications for variable g(m) are indicated, and the errors induced by neglecting g(m) when interpreting photosynthesis and carbon isotope discrimination models are highlighted. Finally, a series of research priorities for the near future are proposed.  相似文献   

13.
CO2浓度增高对三裂叶蟛蜞菊光合生理特性的影响   总被引:7,自引:0,他引:7  
刘金祥  李志芳 《广西植物》2005,25(5):477-480,446
在人工控制CO2浓度梯度条件下,测量了喜阴多年生草本植物三裂叶蟛蜞菊1月和3月的光合速率(Pn)、蒸腾速率(Tr)、胞间CO2浓度(Ci)、气孔导度(Gs)和叶面饱和蒸气压亏缺(Vpdl)。结果表明:CO2浓度升高对三裂叶蟛蜞菊的光合生理特性影响较大,当CO2浓度由0升高到1900μmol·mol1的过程中,Pn增加很快,其值在1.53~11.3μmol·m2·s1之间;水分利用率(WUE:光合与蒸腾之比)随CO2浓度的升高也在增大,当CO2浓度为1900μmol·mol1时,1月份的WUE是18.248μmol·mmol1,3月份的只有8.794μmol·mmol1,高水分利用效率与其对干旱的适应性密切相关。  相似文献   

14.
杭州湾湿地不同演替阶段优势物种光合生理生态特性   总被引:4,自引:0,他引:4  
采用LI-6400光合作用系统测定了杭州湾滨海湿地不同演替阶段6种优势植物-包括早期植物海三棱藨草(Scirpus mariqueter)和糙叶苔草(Carex scabrifolia)、中期植物芦苇(Phragmites communis)和柽柳(Tamarixchinensis)、后期植物白茅(Imperata cylindrica)和旱柳(Salix matsudana)的光合作用光响应曲线(LRC)和CO2响应曲线(A/Ci),并拟合得出多个光合生理指标.结果表明,6种优势植物LRC净光合速率(Pn)大小顺序为海三棱藨草>糙叶苔草>芦苇>柽柳>白茅>旱柳,且早期植物显著大于后期植物(P<0.05);光补偿点(LCP)、光饱和点(LSP)、最大净光合速率(Amax)、和暗呼吸速率(Rd)变化与Pn相同,也表现出演替早期植物>中期植物>后期植物;而表观量子效率(AQY)则表现出相反趋势.由A/Ci曲线可以发现,演替早期优势植物较后期植物具有更低的CO2羧化效率(CCE)和相对较高的CO2补偿点(CCP).可见群落演替与各阶段优势植物的光合生理特征密切相关.  相似文献   

15.
叶肉细胞导度研究进展   总被引:1,自引:0,他引:1  
史作民  冯秋红  程瑞梅  刘世荣 《生态学报》2010,30(17):4792-4803
叶肉细胞导度指叶片叶肉细胞内部的CO2扩散能力,在植物生理生态及全球气候变化和陆地生态系统相互关系的研究中具有重要作用。系统介绍了叶肉细胞导度的发现、发展过程及其研究进展、几种目前国际上常用的叶肉细胞导度测度方法的原理、计算过程;强调了叶肉细胞导度作为光合作用扩散过程一部分的重要意义,明确了叶肉细胞导度的定义及分布范围。并探讨了不同方法的优缺点及注意事项。总结分析了叶肉细胞导度对不同环境因子(温度、水分及环境中CO2和O3浓度等)的响应,从不同角度对叶肉细胞导度的生态学意义进行了简单的概括。对叶肉细胞导度的未来研究进行了展望。  相似文献   

16.
砂仁光合作用的CO2扩散限制与气孔限制分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目前常用从气体交换参数计算的胞间CO2浓度(Ci)来计算气孔限制值(Ls),但由于胁迫情况下计算的Ci偏高常导致结果不准确。该文引入扩散限制分析概念,以砂仁为例介绍了一种不需 Ci的计算扩散限制值(Ld)的新方法。同时通过叶绿素荧光参数间接估算受干旱胁迫植株的Ci(用Ci'表示)计算气孔限制值(Ls')。采用这3种方法分析了生长在100%和40%土壤相对湿度(RSM)下的砂仁(Amomum villosum)净光合速率的限制因素。结果表明两种水分状况下砂仁午后净光合速率的限制因素不同。100%RSM下,午后砂仁Ls没有升高,说明光合作用气孔限制并未增强;午后其Ld升高表明光合作用的CO2扩散限制增强,这主要是由叶肉阻力相对增大所致。40%RSM下,午后砂仁Ls'升高比Ld升高明显,说明气孔阻力在所有扩散阻力中占主导作用,是限制净光合速率的主要原因;而其 Ls午后并未升高,暗示传统的气孔限制分析会得出非气孔限制的错误结论。Ci'低于Ci,说明干旱胁迫时传统的气体交换方法高估了Ci。上述结果都证明水分胁迫情况下传统方法不可靠,该文介绍的两种新方法比较准确可靠,同时使用两种新方法还可定性推测叶肉阻力的变化方向。  相似文献   

17.
以额济纳荒漠河岸胡杨(Populus euphratica)为研究对象,利用LI-6400光合测定仪于2005年5~9月份观测了胡杨叶片气体交换数据,研究了胡杨叶片气孔导度与光合速率、光合有效辐射与光合速率之间的关系.结果表明:(1)胡杨叶片净光合速率随气孔导度的增大而升高,但当气孔导度增加到一定值后,光合速率的增加变缓慢直至平稳,并主要是非气孔限制因素造成的;Ball-Berry模型(B-B模型)能够很好地描述气孔导度与光合速率之间的关系(R2=0.92).(2)叶片净光合速率随着有效辐射的变化符合非直角双曲线规律(R2=0.99).(3)B-B模型和非直角双曲线光合模型耦合后模拟值与观测值之间存在很好的正相关性(r=0.93),但耦合模型的模拟值还是较实测值偏大.因此,在干旱区还必须考虑水分限制因素对气孔开闭的控制作用,进一步构建适合干旱区生态系统特点的水-碳耦合循环机理模型.  相似文献   

18.
RAJENDRUDU  G.  NAIDU  C.V. 《Photosynthetica》1998,34(1):45-55
Leaf gas exchange patterns in relation to leaf positions on stems were studied in field grown forest tree, teak (Tectona grandis L.f.) during first year growth under intensive culture plantation. Net photosynthetic rates (PN) were low in immature leaves (1-2 from shoot apices), increased basipetally on shoot, peaked in leaves (3rd or 4th leaves from shoot apices) which had recently reached full expansion, and thereafter declined in lower crown leaves. High PN found in fully expanded young leaves was associated with increased dark respiration rate (RD) and high radiation saturation as well as compensating irradiance for PN when compared to those of aged leaves. Intercellular CO2 concentrations (Ci) determined at ambient CO2 concentration and saturating irradiance were apparently low for leaves exhibiting high PN when compared to those of aged leaves. Differences in stomatal conductance (gs) and the rate of transpiration (E) were not apparent between leaves after full expansion. The relationship of PN with Ci recorded for leaves at different positions on stems and under natural ambient CO2 concentrations showed a linear decrease in PN with marked increasing Ci and suggested that increase in mesophyll limitations could cause decline in PN during aging of teak leaves after full expansion. Highly significant positive linear correlation was found between PN and Ci determined at below ambient CO2 concentrations and saturating irradiance for both fully expanded young and aged leaves. The estimate of linear relationship between PN and Ci, often considered as carboxylation efficiency, was higher for fully expanded young leaves characterised by high PN than for aged leaves exhibiting low PN. Hence, the increase in mesophyll limitations or decrease in carboxylation efficiency could explain gradual reduction in photosynthetic potential with leaf age after maturation in teak.  相似文献   

19.
The regulation of photosynthesis through changes in light absorption, photochemistry, and carboxylation efficiency has been studied in plants grown in different environments. Iron deficiency was induced in sugar beet (Beta vulgaris L.) by growing plants hydroponically in controlled growth chambers in the absence of Fe in the nutrient solution. Pear (Pyrus communis L.) and peach (Prunus persica L. Batsch) trees were grown in field conditions on calcareous soils, in orchards with Fe deficiency-chlorosis. Gas exchange parameters were measured in situ with actual ambient conditions. Iron deficiency decreased photosynthetic and transpiration rates, instantaneous transpiration efficiencies and stomatal conductances, and increased sub-stomatal CO2 concentrations in the three species investigated. Photosynthesis versus CO2 sub-stomatal concentration response curves and chlorophyll fluorescence quenching analysis revealed a non-stomatal limitation of photosynthetic rates under Fe deficiency in the three species investigated. Light absorption, photosystem II, and Rubisco carboxylation efficiencies were down-regulated in response to Fe deficiency in a coordinated manner, optimizing the use of the remaining photosynthetic pigments, electron transport carriers, and Rubisco.  相似文献   

20.
Leaf gas exchange patterns in relation to leaf positions on stems were studied in field grown forest tree, teak (Tectona grandis L.f.) during first year growth under intensive culture plantation. Net photosynthetic rates (PN) were low in immature leaves (1-2 from shoot apices), increased basipetally on shoot, peaked in leaves (3rd or 4th leaves from shoot apices) which had recently reached full expansion, and thereafter declined in lower crown leaves. High PN found in fully expanded young leaves was associated with increased dark respiration rate (RD) and high radiation saturation as well as compensating irradiance for PN when compared to those of aged leaves. Intercellular CO2 concentrations (Ci) determined at ambient CO2 concentration and saturating irradiance were apparently low for leaves exhibiting high PN when compared to those of aged leaves. Differences in stomatal conductance (gs) and the rate of transpiration (E) were not apparent between leaves after full expansion. The relationship of PN with Ci recorded for leaves at different positions on stems and under natural ambient CO2 concentrations showed a linear decrease in PN with marked increasing Ci and suggested that increase in mesophyll limitations could cause decline in PN during aging of teak leaves after full expansion. Highly significant positive linear correlation was found between PN and Ci determined at below ambient CO2 concentrations and saturating irradiance for both fully expanded young and aged leaves. The estimate of linear relationship between PN and Ci, often considered as carboxylation efficiency, was higher for fully expanded young leaves characterised by high PN than for aged leaves exhibiting low PN. Hence, the increase in mesophyll limitations or decrease in carboxylation efficiency could explain gradual reduction in photosynthetic potential with leaf age after maturation in teak. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号