首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approaches utilizing microlinearity between related species allow for the identification of syntenous regions and orthologous genes. Within the barley Chromosome 7H(1) is a region of high recombination flanked by molecular markers cMWG703 and MWG836. We present the constructed physical contigs linked to molecular markers across this region using bacterial artificial chromosomes (BAC) from the cultivar Morex. Barley expressed sequence tags (EST), identified by homology to rice chromosome 6 between the rice molecular markers C425A and S1434, corresponded to the barley syntenous region of Chromosome 7H(1) Bins 2–5 between molecular markers cMWG703-MWG836. Two hundred and thirteen ESTs were genetically mapped yielding 267 loci of which 101 were within the target high recombination region while 166 loci mapped elsewhere. The 101 loci were joined by 43 other genetic markers resulting in a highly saturated genetic map. In order to develop a physical map of the region, ESTs and all other molecular markers were used to identify Morex BAC clones. Seventy-four BAC contigs were formed containing 2–102 clones each with an average of 19 and a median of 13 BAC clones per contig. Comparison of the BAC contigs, generated here, with the Barley Physical Mapping Database contigs, resulted in additional overlaps and a reduction of the contig number to 56. Within cMWG703-MWG836 are 24 agriculturally important traits including the seedling spot blotch resistance locus, Rcs5. Genetic and physical analysis of this region and comparison to rice indicated an inversion distal of the Rcs5 locus. Three BAC clone contigs spanning the Rcs5 locus were identified. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Abstract Abscission is a universal process whereby plants shed their organs, such as flowers, fruit and leaves. In tomato, the non-allelic mutations jointless and jointless-2 have been discovered as recessive mutations that completely suppress the formation of pedicel abscission zones. A high resolution genetic map of jointless-2 was constructed using 1,122 jointless F2 plants. Restriction fragment length polymorphism (RFLP) marker RPD140 completely co-segregated with the jointless-2 locus and mapped in a 2.4 cM interval between RFLP markers CD22 and TG618. To chromosome walk to jointless-2, all three markers were used to screen a bacterial artificial chromosome (BAC) library and contigs were developed. Intensive efforts to expand and merge the BAC contigs were unsuccessful because of the highly repetitive sequence content on the distal ends of each contig. To determine the physical distance between and the orientation of the three contigs, we used high resolution pachytene fluorescence in situ hybridization (FISH) mapping. The RPD140 contig was positioned in the centromeric region of chromosome 12 between two large pericentric heterochromatin blocks, about 50 Mb from the TG618 contig on the short arm and 10 Mb from the CD22 contig on the long arm, respectively. Based on high resolution genetic and physical mapping, we conclude that the jointless-2 gene is located within or near the chromosome 12 centromere where 1 cM is approximately 25 Mb in length.Communicated by Q. ZhangM.A. Budiman, S-B. Chang and S. Lee contributed equally to the work.  相似文献   

3.
A fine physical map of the rice (Oryza sativa spp. Japonica var. Nipponbare) chromosome 5 with bacterial artificial chromosome (BAC) and PI-derived artificial chromosome (PAC) clones was constructed through integration of 280 sequenced BAC/PAC clones and 232 sequence tagged site/expressed sequence tag markers with the use of fingerprinted contig data of the Nipponbare genome. This map consists of five contigs covering 99% of the estimated chromosome size (30.08 Mb). The four physical gaps were estimated at 30 and 20 kb for gaps 1–3 and gap 4, respectively. We have submitted 42.2-Mb sequences with 29.8 Mb of nonoverlapping sequences to public databases. BAC clones corresponding to telomere and centromere regions were confirmed by BAC-fluorescence in situ hybridization (FISH) on a pachytene chromosome. The genetically centromeric region at 54.6 cM was covered by a minimum tiling path spanning 2.1 Mb with no physical gaps. The precise position of the centromere was revealed by using three overlapping BAC/PACs for ~150 kb. In addition, FISH results revealed uneven chromatin condensation around the centromeric region at the pachytene stage. This map is of use for positional cloning and further characterization of the rice functional genomics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Chia-Hsiung Cheng and Mei-Chu Chung have equal contributions.  相似文献   

4.
 The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region <4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus. Received: 15 August 1998 / Accepted: 29 September 1998  相似文献   

5.
A sunflower BAC library consisting of 147,456 clones with an average size of 118 kb has been constructed and characterized. It represents approximately 5× sunflower haploid genome equivalents. The BAC library has been arranged in pools and superpools of DNA allowing screening with various PCR-based markers. Each of the 32 superpools contains 4,608 clones and corresponds to a 36 matrix pools. Thus, the screening of the entire library could be accomplished in less than 80 PCR reactions including positive and negative controls. As a demonstration of the feasibility of the concept, a set of 24 SSR markers covering about 36 cM in the sunflower SSR map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) have been used to screen the BAC library. About 125 BAC clones have been identified and then organized in 23 contigs by HindIII digestion. The contigs are anchored on the SSR map and thus constitutes a first-generation physical map of this region. The utility of this BAC library as a genomic resource for physical mapping and map-based cloning in sunflower is discussed.  相似文献   

6.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

7.
The Tsn1 gene in wheat confers sensitivity to a proteinaceous host-selective toxin (Ptr ToxA) produced by the tan spot fungus (Pyrenophora tritici-repentis) and lies within a gene-rich region of chromosome 5B. To use the rice genome sequence information for the map-based cloning of Tsn1, colinearity between the wheat genomic region containing Tsn1 and the rice genome was determined at the macro- and microlevels. Macrocolinearity was determined by testing 28 expressed sequence markers (ESMs) spanning a 25.5-cM segment and encompassing Tsn1 for similarity to rice sequences. Twelve ESMs had no similarity to rice sequences, and 16 had similarity to sequences on seven different rice chromosomes. Segments of colinearity with rice chromosomes 3 and 9 were identified, but frequent rearrangements and disruptions occurred. Microcolinearity was determined by testing the sequences of 26 putative genes identified from BAC contigs of 205 and 548 kb in length and flanking Tsn1 for similarity to rice genomic sequences. Fourteen of the predicted genes detected orthologous sequences on six different rice chromosomes, whereas the remaining 12 had no similarity with rice sequences. Four genes were colinear on rice chromosome 9, but multiple disruptions, rearrangements, and duplications were observed in wheat relative to rice. The data reported provide a detailed analysis of a region of wheat chromosome 5B that is highly rearranged relative to rice.  相似文献   

8.
Melon necrotic spot virus (MNSV) is a member of the genus Carmovirus, which produces severe yield losses in melon and cucumber crops. The nsv gene is the only known natural source of resistance against MNSV in melon, and confers protection against all widespread strains of this virus. nsv has been previously mapped in melon linkage group 11, in a region spanning 5.9 cM, saturated with RAPD and AFLP markers. To identify the nsv gene by positional cloning, we started construction of a high-resolution map for this locus. On the basis of the two mapping populations, F2 and BC1, which share the same resistant parent PI 161375 (nsv/nsv), and using more than 3,000 offspring, a high-resolution genetic map has been constructed in the region around the nsv locus, spanning 3.2 cM between CAPS markers M29 and M132. The availability of two melon BAC libraries allowed for screening and the identification of new markers closer to the resistance gene, by means of BAC-end sequencing and mapping. We constructed a BAC contig in this region and identified the marker 52K20sp6, which co-segregates with nsv in 408 F2 and 2.727 BC1 individuals in both mapping populations. We also identified a single 100 kb BAC that physically contains the resistance gene and covers a genetic distance of 0.73 cM between both BAC ends. These are the basis for the isolation of the nsv recessive-resistance gene.  相似文献   

9.
A marker-saturated linkage map of potato was used to genetically map a locus involved in the resistance against wart disease Synchytrium endobioticum race 1. The locus mapped on the long arm of chromosome 4 and is named Sen1-4 in contrast to a Sen1 locus on chromosome 11. The AFLP markers from the Sen1-4 interval enabled the isolation of BAC clones from an 11 genome equivalent BAC library. This was achieved via fingerprinting of BAC pools with the AFLP primer pairs that resemble the genetic marker loci. With non-selective AFLP primers, fingerprints of individual BAC clones were generated to analyse the overlap between BAC clones using FPC. This resulted in a complete contig and a minimal tiling path of 14 BAC clones enclosing the Sen1-4 locus. The BAC contig has a genetic length of ~6 cM and a physical length of ~1 Mb. Our results demonstrate that map-based cloning of Sen1-4 can be pursued on the basis of a strategy of marker saturation alone. Genetic resolution achieved by screening large numbers of offspring for recombination events may not be required. Together with the construction of the BAC contig, a physical map with the position of the markers is accomplished in one step. This provides proof of concept for the utility of the marker saturation that is offered by the ultra dense AFLP map of potato for gene cloning.  相似文献   

10.
Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence‐based physical map of wheat chromosome 6A using whole‐genome profiling (WGP?). The bacterial artificial chromosome (BAC) contig assembly tools fingerprinted contig (fpc ) and linear topological contig (ltc ) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that ltc created a highly robust assembly compared with those formed by fpc . The ltc assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L50 of 1 Mb. To facilitate in silico anchoring, WGP? tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the ‘decoration’ of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map‐based isolation of agronomically important genes/quantitative trait loci located on this chromosome.  相似文献   

11.
We constructed a BAC contig of about 300 kb spanning the Rdr1 locus for black spot resistance in Rosa multiflora hybrids, using a new BIBAC library from DNA of this species. From this contig, we developed broadly applicable simple sequence repeat (SSR) markers tightly linked to Rdr1, which are suitable for genetic analyses and marker-assisted selection in roses. As a source for the high molecular weight DNA, we chose the homozygous resistant R. multiflora hybrid 88/124-46. For the assembly of the BAC contig, we made use of molecular markers derived from a previously established R. rugosa contig. In order to increase the resolution for fine mapping, the size of the population was increased to 974 plants. The genomic region spanning Rdr1 is now genetically restricted to 0.2 cM, corresponding to a physical distance of about 300 kb. One single-stranded conformational polymorphism (SSCP) and one SSR marker cosegregate with the Rdr1-mediated black spot resistance, while one SSR and several cleaved amplified polymorphic sequence or SSCP markers are very tightly linked with one to three recombinants among the 974 plants. The benefits of the molecular markers developed from the R. multiflora contig for the genetic analysis of roses and the integration of rose genetic maps are discussed.  相似文献   

12.
The sunn mutation of Medicago truncatula is a single-gene mutation that confers a novel supernodulation phenotype in response to inoculation with Sinorhizobium meliloti. We took advantage of the publicly available codominant PCR markers, the high-density genetic map, and a linked cytogenetic map to define the physical and genetic region containing sunn. We determined that sunn is located at the bottom of linkage group 4, where a fine-structure genetic map was used to place the locus within a approximately 400-kb contig of bacterial artificial chromosome (BAC) clones. Genetic analyses of the sunn contig, as well as of a second, closely linked BAC contig designated NUM1, indicate that the physical to genetic distance within this chromosome region is in the range of 1000 -1100 kb.cM-1. The ratio of genetic to cytogenetic distance determined across the entire region is 0.3 cM.microm(-1). These estimates are in good agreement with the empirically determined value of approximately 300 kb.microm(-1) measured for the NUM1 contig. The assignment of sunn to a defined physical interval should provide a basis for sequencing and ultimately cloning the responsible gene.  相似文献   

13.
Photoperiod-sensitive genic male-sterile rice has a number of desirable characteristics for hybrid rice production. Previous studies identified pms1, located on chromosome 7, as a major locus for photoperiod-sensitive genic male sterility. The objective of this study was to localize the pms1 locus to a specific DNA fragment by genetic and physical mapping. Using 240 highly sterile individuals and a random sample of 599 individuals from an F2 population of over 5000 individuals from a cross between Minghui 63 and 32001S, we localized the pms1 locus by molecular marker analysis to a genetic interval of about 4 cM, 0.25 cM from RG477 on one side and 3.8 cM from R1807 on the other side. A contig map composed of seven BAC clones spanning approximate 500 kb in length was constructed for the pms1 region by screening a BAC library of Minghui 63 DNA using RFLP markers and chromosomal walking. Analysis of recombination events in the pms1 region among the highly sterile individuals reduced the length of the contig map to three BAC clones. Sequencing of one BAC clone, 2109, identified two SSR markers located 85 kb apart in the clone that flanked the pms1 locus on both sides, as indicated by the distribution of recombination events. We thus concluded that the pms1 locus was located on the fragment bounded by the two SSR markers.  相似文献   

14.
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ~421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ~24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple.  相似文献   

15.
A map-based cloning strategy has been employed to isolate Ctv, a single dominant gene from Poncirus trifoliata that confers resistance to citrus tristeza virus (CTV), the most important viral pathogen of citrus. Cloning of this gene will allow development of commercially acceptable, virus-resistant cultivars. A high-resolution genetic linkage map of the Ctv locus region was developed using a backcross population of 678 individuals. Three DNA markers that were closely linked or co-segregated with Ctv were identified and used to screen BAC libraries derived from an intergeneric hybrid of Poncirus and Citrus. Through chromosome walking and landing, two BAC contigs were developed: one encompassing the Ctv region, and the other spanning the allelic susceptibility gene region. The resistance gene contig consists of 20 BAC clones and is approximately 550 kb in length; the susceptibility gene contig consists of 16 BAC clones and extends about 450 kb. The Ctv locus was localized within a genomic region of approximately 180 kb by genetic mapping of BAC insert ends. The BAC contigs were integrated with the genetic map; variation in the ratio of genetic to physical distance was observed in the vicinity of Ctv. Southern hybridization data indicated that a few copies of NBS-LRR class sequences are distributed at or around the Ctv locus. Efforts are being made to assign the Ctv locus to a smaller genomic fragment whose function can be confirmed through genetic complementation of a CTV susceptible phenotype. These results indicate that map-based gene cloning is feasible in a woody perennial.  相似文献   

16.
The rd3 retinal degeneration gene was previously mapped 10 ± 2.5 cM distal to Akp1 on mouse Chromosome (Chr) 1 (Chang et al., 1993), a region that may be homologous to the locus of the human USH2A gene, which carries mutations responsible for Usher IIa retinal degeneration/hearing loss syndrome. An intercross from an Rb(11,13)4Bnr(rd3/rd3) × C57BL/6J mating was set up, 428 F2 meioses were analyzed, and the rd3 gene was placed between the markers D1MIT292/D1MIT209 and D1MIT510, a distance of 1.40 ± 0.57 cM. These flanking markers and the mouse ortholog of USH2A (Mush2a) were mapped in the T31 mouse radiation hybrid (RH) panel, with the result that D1MIT292/D1MIT209 and D1MIT510 were 7.9 cR3000 apart (∼800 kb), and Mush2a was > 30 cR3000 proximal to the pair, excluding it from the rd3 locus. A contig spanning the rd3 locus and consisting of 2 YACs and one BAC was generated, and Mush2a was absent from it, confirming its exclusion from the locus. Comparison of adjacent marker pairs in the Whitehead genetic map and our genetic map showed some discrepancies in order of markers and genetic distances. Comparison of our genetic map and the RH map showed some highly skewed relationships between genetic and physical distances. Received: 4 January 1999 / Accepted: 26 February 1999  相似文献   

17.
Hong  Guofan 《Plant molecular biology》1997,35(1-2):129-133
A rapid and accurate strategy for rice contig map construction was described. Rice BAC library with average insert of 120 kb in length was used as building materials in contig mapping. The contigs of varied lengths ranging from 500 kb to several megabases with sufficient redundancy to ensure the accuracy of the joining between individual BACs were formed by fingerprinting. The contigs were then assigned to and ordered along the chromosomes by various molecular markers through their hybridization against the whole rice genomic library. The accuracy of clone overlaps in contig was further confirmed by the existence in contigs of well fit stacks of marker-lodged clones. He contigs thus obtained covered nearly the rice genome.  相似文献   

18.
19.
The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of small grain crops especially wheat (Triticum aestivum L., 2n = 6x = 42, genomes AABBDD) in many parts of the world. The greenbug-resistance gene Gb3 originated from Aegilops tauschii Coss. (2n = 2x = 14, genome DtDt) has shown consistent and durable resistance against prevailing greenbug biotypes in wheat fields. We previously mapped Gb3 in a recombination-rich, telomeric bin of wheat chromosome arm 7DL. In this study, high-resolution genetic mapping was carried out using an F2:3 segregating population derived from two Ae. tauschii accessions, the resistant PI 268210 (original donor of Gb3 in the hexaploid wheat germplasm line ‘Largo’) and susceptible AL8/78. Molecular markers were developed by exploring bin-mapped wheat RFLPs, SSRs, ESTs and the Ae. tauschii physical map (BAC contigs). Wheat EST and Ae. tauschii BAC end sequences located in the deletion bin 7DL3-0.82–1.00 were used to design STS (sequence tagged site) or CAPS (Cleaved Amplified Polymorphic Sequence) markers. Forty-five PCR-based markers were developed and mapped to the chromosomal region spanning the Gb3 locus. The greenbug-resistance gene Gb3 now was delimited in an interval of 1.1 cM by two molecular markers (HI067J6-R and HI009B3-R). This localized high-resolution genetic map with markers closely linked to Gb3 lays a solid foundation for map based cloning of Gb3 and marker-assisted selection of this gene in wheat breeding.  相似文献   

20.
A BAC-based physical map of the channel catfish genome   总被引:3,自引:0,他引:3  
Xu P  Wang S  Liu L  Thorsen J  Kucuktas H  Liu Z 《Genomics》2007,90(3):380-388
Catfish is the major aquaculture species in the United States. To enhance its genome studies involving genetic linkage and comparative mapping, a bacterial artificial chromosome (BAC) contig-based physical map of the channel catfish (Ictalurus punctatus) genome was generated using four-color fluorescence-based fingerprints. Fingerprints of 34,580 BAC clones (5.6x genome coverage) were generated for the FPC assembly of the BAC contigs. A total of 3307 contigs were assembled using a cutoff value of 1x10(-20). Each contig contains an average of 9.25 clones with an average size of 292 kb. The combined contig size for all contigs was 0.965 Gb, approximately the genome size of the channel catfish. The reliability of the contig assembly was assessed by both hybridization of gene probes to BAC clones contained in the fingerprinted assembly and validation of randomly selected contigs using overgo probes designed from BAC end sequences. The presented physical map should greatly enhance genome research in the catfish, particularly aiding in the identification of genomic regions containing genes underlying important performance traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号