首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以透明骨骼双色法对挂榜山小鲵(Hynobius guabangshanensis)成体和亚成体舌器的形态特征进行观察和详细描述。结果表明,在成体中,下舌软骨中部交叉;角舌软骨末端被第一下鳃骨和第一角鳃骨的愈合体遮盖;具有基鳃软骨角状突;第二角鳃骨骨化;尾舌骨骨化,呈"一"字形。在亚成体中,下舌软骨中部未交叉;第一下鳃骨和第一角鳃骨单独存在;无基鳃软骨角状突;第二角鳃骨未骨化;具有第三、第四对角鳃骨,且均为软骨;尾舌骨未骨化,成"1"字形。这些形态特征的改变可能由舌器在成体和亚成体阶段的功能所引起。  相似文献   

2.
鲂鱼的头骨发育及其适应意义   总被引:1,自引:0,他引:1  
赵俊  陈湘Lin 《动物学研究》1995,16(4):307-314
本文对鲂鱼(Megalobramaskolkovii)头骨的早期发育过程及其与鱼苗的存活功能需要之间的关系进行了研究。头骨发育的全过程可划分为5个阶段,即软颅阶段、咽颅膜骨附加阶段、脑颅开始骨化阶段、脑颅快速骨化阶段和骨化完成阶段。刚出膜仔鱼头部即有软骨存在,最先出现的硬骨是膜质上颌骨和主鳃盖骨,脑颅最先开始骨化的是基枕骨和侧枕骨,随后才是副蝶骨。头骨发育过程与鱼苗早期存活的功能需要之间有着密切的关系。  相似文献   

3.
为揭示新疆北鲵(Ranodon sibiricus)骨骼系统特征及骨骼发育时序规律,采用“软骨-硬骨”双染色法对2月龄、3月龄、4月龄、6月龄、1龄、2龄、3龄和9龄8个不同年龄段新疆北鲵骨骼系统进行详细观察和对比分析。结果表明新疆北鲵骨骼系统分为头骨、脊椎骨和附肢骨三大部分,共(217±1)块骨,其中头骨骨骼53块脊椎骨(48±1)块,附肢骨116块。此外,新疆北鲵头颅外形宽扁,犁骨齿排列幼体呈“/”型,成体则呈“■”型颅顶同时具有额顶囟和前颌囟,且前颌囟长与鼻骨长之比达或大于1/2,翼骨前端与上颌骨后端较接近等显著区别于其他小鲵科物种的骨骼特征,可作为种间分类重要依据。基于骨骼发育时序和骨化时间特征对比分析,北鲵骨骼数量和形态发生重大改变主要在6月龄幼体和2龄幼体两个时期。6月龄幼体的骨骼变化主要体现在头骨:新生出上颌骨、泪骨和前额骨,前颌囟形状逐渐清晰,腭骨退化,翼骨向后回缩,鳞骨向外延展。此外,腰带新生出前耻骨,暗示其进入骨骼变态发育阶段。2龄幼体的骨骼变化主要体现在舌器:第三、第四鳃弓退化,外鳃消失,暗示其变态发育接近尾声或结束。研究结果表明新疆北鲵变态发育时期从6月龄起至2...  相似文献   

4.
光照对大泷六线鱼仔鱼摄食量的影响   总被引:6,自引:0,他引:6  
对不同照度下大泷六线鱼仔鱼摄食量进行了初步测定,得知仔鱼在100Lx时摄食量最大,其次为10Lx,摄食率为100Lx时最高,并在20分钟时达到最大值,可见大泷六线仔鱼的适宜照度范围为10-100Lx,高或低于此照度都会影响仔鱼的摄食效果。  相似文献   

5.
大黄鱼仔稚鱼脊柱、胸鳍及尾鳍骨骼系统的发育观察   总被引:4,自引:0,他引:4  
研究采用二重染色法对3-28日龄人工培育的大黄鱼Larimichthys crocea(Richardson)仔稚鱼的部分骨骼系统的发育进行观察。结果显示,仔鱼的脊索从6日龄(平均全长MTL3.9mm)开始分节,8-10日龄髓弓、脉弓先后开始发育,14日龄(MTL7.5mm)脊椎骨、髓棘、脉棘均已形成,至28日龄(MTL19.5mm)已发生骨化;大黄鱼仔鱼孵化时,胸鳍的上匙骨、匙骨、后匙骨、支鳍骨原基已形成,27日龄(MTL19.0mm)稚鱼具5块支鳍骨,鳍条发育完整;尾鳍发育以8日龄仔鱼脊索后端腹部2块尾下骨的形成开始,至14日龄仔鱼尾鳍已初具雏形,尾杆骨、尾上骨和尾下骨均发育完全,21日龄稚鱼尾下骨排列成弧状,第三与第四块尾下骨之间的缝隙增大,把尾鳍鳍条分为上下两部分,鳍条分节明显,28日龄稚鱼尾鳍尾杆骨及鳍条发生钙化。    相似文献   

6.
五种蝌蚪口器及舌鳃骨的结构比较   总被引:2,自引:0,他引:2  
夏坤  吴民耀  周凤  王宏元 《四川动物》2012,31(4):593-597
采用体视显微镜和骨骼双染色法对5种不同栖息环境的无尾两栖动物蝌蚪的口器和舌鳃骨的形态结构特征进行了观察。5种蝌蚪口器由唇齿行、唇乳突和角质颌等组成。舌鳃骨是由关联骨Ⅰ、关联骨Ⅱ、角舌骨、舌鳃骨盘和角鳃骨等骨骼组成。蝌蚪的梅氏软骨若较发达,其摄食方式可能为刮食;蝌蚪的舌鳃骨发达,其摄食方式则可能为滤食。角质颌、唇齿以及角鳃骨上鳃耙的出现显著增强了蝌蚪主动摄食能力和对食物与非食物的主动选择性。  相似文献   

7.
不同鱼类肌间骨的骨化模式研究   总被引:1,自引:0,他引:1  
为研究鱼类肌间骨的骨化模式, 采用整体骨骼染色方法, 对黄鳝(Monopterus albus)和泥鳅(Misgurnus anguillicaudatus) 2种处于不同进化地位且游动模式不同的鱼类肌间骨发生发育进行了系统观察。结果显示合鳃鱼目合鳃鱼科且游动模式属于鳗鲡模式的黄鳝在孵出后30d (体长40 mm)时, 其头部开始出现椎体小骨; 随后依次向尾部骨化, 在孵出后55d (体长约100 mm)时, 肌间骨相继出现完毕, 所有椎体小骨均为“I”形。鲤形目鳅科且游动模式为鲹科模式的泥鳅在孵出后27d (体长17 mm)时, 肌间骨开始在尾部出现, 包括髓弓小骨和脉弓小骨; 随后依次向头部骨化, 在孵出后40d (体长35 mm)时, 肌间骨全部出现, 形态包括“I”、“Y”和“卜”形。此外, 研究利用成骨细胞特异性转录因子绿色转基因荧光蛋白(Osterix GFP)斑马鱼品系, 通过观察此osterix GFP活体斑马鱼, 可发现斑马鱼肌间骨从尾部向头部依次骨化的过程。研究结果揭示鱼类肌间骨的骨化规律与其游动模式密切相关, 且肌间骨的形态种类的多态性与其游动模式和体型有一定的关系。  相似文献   

8.
(鱼句)亚科花(鱼骨)型鱼类骨骼系统的比较   总被引:2,自引:0,他引:2  
对我国花型Hemibarbuspattern鱼类作了骨骼系统比较,结果表明,此类型鱼类脑颅较长,副蝶骨平直或稍弯曲,眶蝶骨腹纵嵴发达(铜鱼Coreius septentrionalis例外),下颞窝和咽突中等大,基枕骨后突发达;脑颅中的上筛骨的后突、侧筛骨的外筛突,蝶耳骨的外突、上耳骨的后突、围眶骨和后颞窝等均有明显的差异;咽颅中的舌颌骨、尾舌骨、鳃盖骨和下咽齿的列数等又有显著的区别;附肢骨骼中的腰带骨、脊椎骨中的复合神经骨和第4椎骨腹侧的悬器等也有不同之处。据此,这些差异和区别可作为属间或种间的分类依据。  相似文献   

9.
大口黑鲈和尖吻鲈骨骼系统的比较研究   总被引:6,自引:0,他引:6  
对大口黑鲈和尖吻鲈的骨骼系统进行了比较研究。结果表明 :从整体看 ,大口黑鲈的脑颅较宽 ,吻短钝 ,眼后头部短 ;尖吻鲈的脑颅狭窄 ,吻部尖长而突出 ,眼后头部较长。各部分的骨骼特征 :大口黑鲈脑颅的中筛骨、侧筛骨、额骨、上枕骨、上耳骨、翼耳骨和围眶骨等与尖吻鲈有明显的区别 ;大口黑鲈咽颅中的前颌骨、齿骨、中翼骨、鳃盖骨骼、角舌骨、尾舌骨、下咽骨等与尖吻鲈又有显著的差异 ;大口黑鲈附属骨骼中的肩带骨、腰带骨、脊椎骨等有很大的不同。这些差异和不同可作为科间或属间分类依据。  相似文献   

10.
记述了产自内蒙古呼和勃尔和剖面阿山头组的始施氏貘(Schlosseria magister)幼年头骨、头骨碎片及产自额尔登敖包底白层的S.magister成年头骨。幼年头骨在脊齿貘科属首次描述,成年头骨材料也是目前S.magister中首次描述。幼年头骨主要特征如下:头骨细长,脑颅部略有扩张,有眶后突,眶后收缩明显,矢状脊轻微发育;鼻切迹浅,位于前臼齿列之前,由前颌骨和鼻骨构成;眼眶大,眶前缘位于M1后部上方,眶下孔位于DP3-4之上;基蝶骨向后向中央逐渐加厚,末端隆起;翼蝶骨很大,从腹面看向后向背侧扩展,末端形成三角形的翼蝶骨突,覆盖在卵圆孔上;岩骨岬部表面有内颈动脉及其分支留下的3条沟痕;最内侧的为内颈动脉内侧沟,沿着岬部弯曲前行至最前部;镫骨动脉沟短小,横跨在圆窗前腹侧;岬动脉沟最长,起始于卵圆窗前内侧,沿岬部向前延伸;弓形下窝所在位置平滑,无凹陷。S.magister乳颊齿主要特征如下:DP2冠面大致呈三角形,前窄后宽,前缘较尖,长明显大于宽;外脊上仅有一个中央主尖前尖,一个非常不明显的小棱(可能为雏形的原脊)紧贴在前尖后舌侧壁上;前、后附尖不明显。DP3冠面呈梯形,与DP2相比明显增大,亚臼齿化,前附尖和后附尖略大,原、后脊明显。前尖大,后尖尚未分离;原尖很弱,几乎无法辨认,原脊低且不发育;次尖大而钝,比原尖更靠舌侧,后脊比原脊略发育,中部具小的后小尖;后脊在次尖处拐向后唇侧,使得磨蚀面呈V形。DP4冠面近方形,完全臼齿化,后尖已从外脊上分化出来,比前尖稍小,向舌侧倾斜,后尖肋明显;舌侧尖、脊发育完好,原尖和次尖大而钝,原脊、后脊近乎平行,比DP3的更高更长;两条脊分别在原尖和后尖处拐向后唇侧方,形成V形的磨蚀面。S.magister在由幼年向成年转变的过程中,主要变化趋势如下:1)吻部特征不同,主要表现为鼻切迹的位置、形态以及与之相关的前颌骨、上颌骨形态的差异。幼年头骨的鼻切迹位于前臼齿列之前,由前颌骨和鼻骨组成;成年头骨的鼻切迹后缩至M1-2之上,由鼻骨和上颌骨组成,并且因鼻切迹后缩造成鼻骨不与前颌骨接触。幼年和成年个体上颌骨的整体形态,眶前窝、眶下孔的位置和形态都差异显著。2)与咀嚼功能相关的结构改变。幼年个体的矢状脊微弱,而成年个体的则高且突起,暗示了后者具有相对强大的颞肌,以适应咀嚼功能。对比发现,S.magister与Lophialetes expeditus成年头骨在大小、整体形态和一些具有分类意义的特征上(如鼻骨和泪骨、前颌骨的接触方式,眶后突、关节后突、下颌关节窝的形状,矢状脊的高度等)非常接近。参照童永生、雷奕振(1984)对脊齿貘类头骨的划分方法,将Schlosseria magister的头骨与L.expeditus的划为一组,同时纠正了原有划分方案中存在的问题。  相似文献   

11.
The skull bones must grow in a coordinated, three‐dimensional manner to coalesce and form the head and face. Mammalian skull bones have a dual embryonic origin from cranial neural crest cells (CNCC) and paraxial mesoderm (PM) and ossify through intramembranous ossification. The calvarial bones, the bones of the cranium which cover the brain, are derived from the supraorbital arch (SOA) region mesenchyme. The SOA is the site of frontal and parietal bone morphogenesis and primary center of ossification. The objective of this review is to frame our current in vivo understanding of the morphogenesis of the calvarial bones and the gene networks regulating calvarial bone initiation in the SOA mesenchyme.  相似文献   

12.
In tetrapod long bones, Hedgehog signalling is required for osteoblast differentiation in the perichondrium. In this work we analyse skeletogenesis in zebrafish larvae treated with the Hedgehog signalling inhibitor cyclopamine. We show that cyclopamine treatment leads to the loss of perichondral ossification of two bones in the head. We find that the Hedgehog co-receptors patched1 and patched2 are expressed in regions of the perichondrium that will form bone before the onset of ossification. We also show that cyclopamine treatment strongly reduces the expression of osteoblast markers in the perichondrium and that perichondral ossification is enhanced in patched1 mutant fish. This data suggests a conserved role for Hedgehog signalling in promoting perichondral osteoblast differentiation during vertebrate skeletal development. However, unlike what is seen during long bone development, we did not observe ectopic chondrocytes in the perichondrium when Hedgehog signalling is blocked. This result may point to subtle differences between the development of the skeleton in the skull and limb.  相似文献   

13.

Background  

The flat bones of the skull (i.e., the frontal and parietal bones) normally form through intramembranous ossification. At these sites cranial mesenchymal cells directly differentiate into osteoblasts without the formation of a cartilage intermediate. This type of ossification is distinct from endochondral ossification, a process that involves initial formation of cartilage and later replacement by bone.  相似文献   

14.
We investigated the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita‐Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event‐pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi‐ simultaneity is seen in the chondrogenesis of the forelimb and the hind limb. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Several studies have evaluated the effects of dietary vitamin A (VA) on the incidence of skeletal deformities during early ontogeny of fish, but little is known about its effects on bones depending on their process of ossification (dermal or chondral). We examined the incidence of skeletal deformities along development (30 and 48 dph) by double staining technique, in dermal (haemal and caudal vertebral bodies) and chondral (neural and haemal spines, epural, parahypural and hypurals) bones in Senegal sole post metamorphosed larvae fed with different dietary VA levels (37 000, 44 666, 82 666 and 203 000 UI total VA kg?1 DW) during Artemia feeding phase (6–37 dph, at 18°C). Results obtained in this study showed that dietary VA disrupted the skeletogenesis in Senegalese sole post metamorphosed larvae by increasing the incidence of skeletal deformities in the axial skeleton and caudal fin complex, which were dependent on both bone morphogenesis and ossification processes. Fish fed with the highest dietary VA content showed the highest incidence of skeletal deformities and its value increased along ontogeny. However, when we compared the incidence of deformities in skeletal structures considering their ossification process, most skeletal structures derived from chondral ossification showed a significant higher increase in deformity incidences in fish fed an excess of VA (44 666, 82 666 and 203 000 UI kg?1 DW), however within chondral bones, hypurals deformity incidence only increased in sole larvae fed Artemia highest VA content. In contrast, this dietary dose‐response effect was only noted in dermal bones from fish fed the highest dose of VA (203 000 UI kg?1 DW). In addition, the incidence of deformities in chondral bones increased even when the dietary imbalance of VA was corrected, whereas dermal bones were not affected at later ages. These results indicated that depending on the ossification process from which different skeletal structures are derived, bones might be differentially affected by high dietary VA content. Those directly originated from the connective tissue with a preliminary cartilage stage were more sensitive to dietary VA excess than those formed by intramembranous ossification.  相似文献   

16.
团头鲂骨骼系统的发育   总被引:3,自引:0,他引:3  
本文对团头鲂骨骼系统的发育进行了研究,观察了刚孵化的仔鱼到已具成鱼特征的幼鱼的骨骼发育过程,对脑颅、咽颅、韦伯氏器和脊椎骨、肩带和胸鳍支鳍骨、腰带和腹鳍支鳍骨以及奇鳍支鳍骨在不同生长阶段的形态特征进行了描述。讨论了韦伯氏器、复合神经骨及第二神经板等的发生过程;并根据团头鲂骨骼发育情况,讨论了头骨各骨片的性质。  相似文献   

17.
The ontogeny of the viscerocranial skeleton of sea bream Sparus aurata larvae was studied from 1 to 90 days post-hatching. In the smallest specimens analysed at 2·7 mm L N no cephalic elements were present and at 3·1 mm L N the following cartilaginous structures were visible: trabecula cranii, auditory capsule, Meckel's cartilage, quadrate, hyosymplectic cartilage, sclerotic, hypohyal, ceratohyal epihyal cartilage, interhyal, hypobranchial 1 and ceratobranchial 1. The only structure ossified at this size is the maxillary and the next ossified structures to appear are the preopercle and opercle at about 3·7 mm L N. The last bones to appear are infraorbital 2 and 6 at 15·1 mm L S. The first cartilaginous elements and structures to ossify in S. aurata appear to be related with functional requirements, so that structures involved directly in feeding and breathing generally appear and ossify before those that are not. The ontogeny of different regional structures revealed that generally the dermal bones ossify before the cartilage replacement bones. Comparison of S. aurata viscerocranial skeleton ontogeny with that of phylogenetically distant fish demonstrates that different ossification strategies exist in higher and lower teleost fish.  相似文献   

18.
Ossification of the human fetal basicranium   总被引:3,自引:0,他引:3  
Previous investigations of prenatal development of the human cranium have not identified the sequence of its ossification. The purpose of the present study was to elucidate the pattern of skeletal maturity of the cranial bones in the midsagittal region anterior to the foramen magnum. This study is based upon a radiographic and histochemical investigation of midsagittal tissue blocks of the cranial bases of 73 human fetuses derived from the first half of the prenatal period. A marked regularity in the ossification pattern of the bones in the midsagittal part of the human cranium was observed. Ossification starts in the frontal bone. The sequence in which the next bones ossify is occipital bone, basisphenoid bone, presphenoid bone, and ethmoid bone. The material was divided into 7 maturity stages devised for this analysis. The stages were related to general fetal size (crown-rump length) and to general fetal maturation (composite number of ossified bones in hand and foot). Skeletal development of the median part of the human cranium is not strictly correlated with the size or the stage of general maturation of the fetuses. Knowledge of normal skeletal development is necessary for understanding anomalies of development.  相似文献   

19.
The order of ossification of bones in the skeleton of Rana pipiens during larval growth and metamorphosis has been determined from observations on specimens fixed in 70% alcohol and stained with alizarin red S. The axial skeleton ossifies in a generally cephalo-caudal sequence, beginning with the parasphenoid bone at Taylor-Kollros stages IV-IX, followed by vertebrae (V-IX) and then the urostyle (IX-XIV). Exoccipitals (VII-IX), frontoparietals (XI-XII) and prootics (XIII-XVII) are additional cranial bones which successively ossify before metamorphosis. With the onset of metamorphosis at stage XVIII jawbones and rostral bones of the skull ossify in the following succession: premaxilla, maxilla, septomaxilla, nasal, dentary, angular, squamosal, pterygoid, prevomer, mentomeckelian, quadratojugal, palatine, columella, posteromedial process of “hyoid.” The sphenethmoid does not ossify until after metamorphosis. Ossification of limbbones begins with the femur or humerus at stages X-XII and progresses proximo-distally to the phalanges by stages XIII-XV. Carpals, however, do not ossify until stage XXV or after metamorphosis. The ilium of the pelvic girdle begins to ossify at stages X-XII, but the ischium is delayed until stages XX-XXIII. Scapula and coracoid of the pectoral girdle undergo initial ossification at stages XII-XIV, suprascapula and clavicle at stages XIII-XV. The sternum does not begin to ossify until stage XXIV. The possible role of thyroid hormones in stimulating osteogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号