首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
武汉东湖浮游藻类物种多样性的研究   总被引:35,自引:7,他引:28  
从 1994年 1月至 1996年 12月 ,每月定期从东湖四个常规采样站采集浮游藻类标本进行研究。经鉴定共发现 2 6 0个分类单位 ,隶属于 7个门的 99个属 ,其中有 2种为中国新记录。以 1995年浮游藻类的群落结构进行分析的结果是 :浮游藻类的种类数以绿藻门最多 ,硅藻门次之 ;各站基本上均以夏季种类最多 ,其次为秋季和春季 ,冬季最低 ;四个站中分布的种类差异不明显 ,各站都出现的种类数占全部种类数的 39.6 % ;不同的站或同一个站在不同的季节其优势类群亦不同。计算了与水体营养类型有关的浮游藻类群落的两种指标—多样性指数和硅藻商。对东湖浮游藻类群落结构的特征及变化与水质的关系进行了探讨 ,从浮游藻类群落的演替指出东湖的富营养化程度自2 0世纪 5 0年代以来一直在加剧。  相似文献   

2.
武汉东湖浮注重藻类物种多样性的研究   总被引:15,自引:3,他引:12  
从1994年1月至1996年12月,每月定期从东糊四个常规采样站采集浮游藻类标本进行研究。经鉴定共发现260个分类单位,隶属于7个门的990个属,其中有2种为中国新记录,以1995年浮游藻类的群落结构进行分析的结果是:浮游藻类的种类数以绿藻门最多,硅藻门次之;各站基本上均以夏季种类最多,其次为秋季和春季,冬季最低;四个站中分布的种类差异不明显,各站都出现的种类数占全部种类数的39.6%;不同的站或同一个站在不同的季节其优势类群亦不同。计算了与水体营养类型有关的浮游藻类群落的两种指标-多样性指数和硅藻商。对东湖浮游灯群落结构的特征及变化与水质的关系进行了探讨,从浮游藻类群落的演替指出东湖的富营养化程度自20世纪50年代以来一直在加剧。  相似文献   

3.
太湖浮游细菌与春末浮游藻类群落结构演替的相关分析
  总被引:7,自引:0,他引:7  
邢鹏  孔繁翔  曹焕生  张民 《生态学报》2007,27(5):1696-1702
为研究浮游细菌与浮游藻类群落演替的相关性,2005年4月至6月在太湖5个观测点采集浮游细菌及浮游藻类样本。分别采用聚合酶链式反应-变性梯度凝胶电泳(PCR—DGGE)和显微观察的方法分析浮游细菌及浮游藻类群落组成。结果表明,春末夏初,浮游细菌与藻类均呈现较高的多样性,浮游细菌DGGE图谱具有43种不同条带,浮游藻类的常见种有29种。浮游细菌群落聚类分析显示,丝藻(Ulothrix sp.)和微囊藻(Microcystis spp.)占优势时,浮游细菌群落基因组成存在明显差异。以藻类种群Shannon—Wiener多样性指数(Hp),浮游藻类总细胞数(N)以及Microcystis spp.(M)百分含量为变量,典型对应分析(CCA)结果显示浮游细菌与浮游藻类群落结构变化的相关系数为30.9%,表明春末夏初太湖浮游细菌与浮游藻类群落演替具有较高的相关性。  相似文献   

4.
太平湖水库的浮游藻类与营养型评价   总被引:8,自引:1,他引:7  
研究了太平湖水库的浮游藻类与营养类型。共发现藻类175种。绿藻门的种类最多(87种),占种类总数的50%。硅藻和蓝藻次之(分别为34和33种),各占19.4%和18.8%。其它5门藻合计21种,仅占种类总数的11.8%。根据营养型分析结果,太平湖目前水质优良,属中营养型水体;但是藻类的优势种类和总氮含量两项指标已达富营养水平,而且微囊藻(Microcystis)水体较多出现,表明该水体已有向富营养化发展的趋势。含磷量较低(总磷0.012mg/L)是浮游藻类进一步大量繁殖的限制因子。为防止水质恶化,除了应控制含氮化合物的污染外,限制磷的输入尤为重要。  相似文献   

5.
贫营养湖泊花神湖和紫霞湖浮游细菌群落结构分析   总被引:1,自引:0,他引:1  
以南京市花神湖和紫霞湖两个贫营养型湖泊为研究对象,通过构建花神湖和紫霞湖16S rRNA基因克隆文库探讨了浮游细菌群落结构组成的变化。结果表明,花神湖和紫霞湖两湖泊水体中浮游细菌群落结构相似,主要隶属于放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、α-变形菌门(Alphaproteobacteria)、β-变形菌门(Betaproteobacteria)、杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)、疣微菌门(Verrucomicrobia)和芽单胞菌门(Gemmatimonadetes),其中放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、β-变形菌门(Betaproteobacteria)是优势细菌类群。两个湖泊水体中75%的细菌与GenBank中已有的未培养细菌同源性高于97%,同时在两个克隆文库中还发现了6个淡水细菌新类群。通过对低纬度区域贫营养型湖泊浮游细菌群落结构的分析,加深了我们对浮游细菌多样性的了解,表明湖泊浮游细菌多样性有待进一步认识。  相似文献   

6.
博斯腾湖浮游植物群落结构特征及其影响因子分析   总被引:1,自引:0,他引:1  
2011年对博斯腾湖大湖区17个采样站位的浮游植物及水体主要理化因子进行了4次系统调查。结果表明, 在17个站位共鉴定出浮游植物127种(属), 其中优势种(属)9种。浮游植物群落全年均以硅藻为主导, 冬、春季节, 浮游植物组成呈硅藻-甲藻型, 优势类群主要为贫-中营养型浮游藻类, 到夏、秋季节逐渐形成硅藻-绿藻型, 以富营养型的浮游藻类为优势类群。浮游植物总平均生物量为(2.512.95) mg/L, 生物量季节变动显著, 峰值出现在夏季, 冬季最低。基于Canoco的多变量分析表明: 环境变量共解释了浮游植物群落总变异的54.5%, 水温是影响浮游植物分布最重要的环境因子, 其次为枝角类丰度。水中氮含量是影响浮游植物丰度的主要因子, 同时浮游植物对水体有机物含量也有较大的影响。    相似文献   

7.
大气氮沉降量持续增加已经成为当前关注的热点.土壤细菌群落作为土壤环境中大量存在的微生物,在养分循环过程中发挥着不可忽视的作用.在福建三明森林生态系统与全球变化研究站陈大观测点,我们在野外模拟大气氮沉降试验,通过16S rDNA扩增子测序,研究中亚热带地区杉木幼林土壤细菌群落多样性和组成对氮沉降的响应.结果表明:短期施氮对研究区的土壤细菌群落多样性和组成并未产生显著影响,但高氮处理显著改变敏感菌群相对丰度,如富营养型类群丰度增加、贫营养型类群丰度降低.土壤细菌群落的营养策略发生变化,这可能是受到了养分有效性的驱动.因此,了解土壤细菌群落和养分分配格局对氮沉降的响应,有助于提高我们对未来环境的预测能力.  相似文献   

8.
滇池流域是我国典型的富磷区, 分析该区域内不同土壤磷含量下主要植物的化学计量特征, 有助于理解该区域的生态环境特点和生态恢复的特殊性。该研究测定了滇池流域滇中地区75种常见植物叶片的碳(C)、氮(N)、磷(P)及钾(K)含量, 综合分析了该区域不同土壤磷水平(富磷和正常)下不同生活型植物叶片的C、N、P和K的计量特征。结果表明, 研究区域植物叶片C、N和K含量的算术平均数分别是441.42、16.17和13.57 mg·g-1, P含量的几何平均数为1.92 mg·g-1, 植物叶片的N、P和K含量之间呈显著的正相关; 富磷区域植物叶片的P和K含量显著高于正常区域, N/P、K/P显著低于正常区域。无论是富磷还是正常区域, 草本植物的N、P和K含量均高于木本植物, 乔木与灌木差异不明显。植物叶片的P含量及N/P与土壤磷水平呈显著相关; 叶片N/P分析结果表明, N是影响滇池流域植物生长和群落恢复的主要限制元素。研究指出, 在滇池流域增加陆地植物群落及生态系统的氮素来源是进行生态修复和面源污染防治的重要切入点。  相似文献   

9.
浮游动物可以通过牧食作用来抑制浮游藻类的增长, 同时浮游动物排泄的营养盐又可以促进浮游藻类的增长,二者的强弱是浮游动物控制浮游藻类的关键。通过人为去除处理组水体中的浮游动物, 研究浮游动物生物量和群落结构的不同对富营养水体中浮游藻类的影响。研究结果显示处理组浮游动物总生物量低于空白组, 且缺乏大型枝角类溞属(Daphnia sp.); 去除浮游动物显著降低了水体中的总氮和总磷浓度以及浮游藻类生物量(叶绿素a), 同时增加了附着藻的生物量; 并且影响了浮游藻类群落结构: 对照组是空星藻(Coelastrum sp.)为优势种而处理组则为湖丝藻(Limnothrix sp.)和四集藻(Palmella sp.)。结果表明浮游动物排泄营养盐产生的上行效应大于牧食作用产生的下行效应。  相似文献   

10.
土壤微生物在陆地生态系统的生物地球化学循环中起着重要作用。然而目前尚不清楚氮(N)添加量及其持续时间如何影响土壤微生物群落结构,以及微生物群落结构变化与微生物相对养分限制状况是否存在关联。本研究在亚热带黄山松林开展了N添加试验以模拟N沉降,并设置3个处理:对照(CK, 0 kg N·hm-2·a-1)、低N(LN, 40 kg N·hm-2·a-1)和高N(HN, 80 kg N·hm-2·a-1)。在N添加满1年和3年时测定土壤基本理化性质、磷脂脂肪酸含量和碳(C)、N、磷(P)获取酶活性,并通过生态酶化学计量分析土壤微生物的相对养分限制状况。结果表明: 1年N添加对土壤微生物群落结构无显著影响,3年LN处理显著提高了革兰氏阳性菌(G+)、革兰氏阴性菌(G-)、放线菌(ACT)和总磷脂脂肪酸(TPLFA)含量,而3年HN处理对微生物的影响不显著,表明细菌和ACT对N添加可能更为敏感。N添加加剧了微生物C和P限制,而P限制是土壤微生物群落结构变化的最佳解释因子。这表明,N添加诱导的P限制可能更有利于部分贫营养菌(如G+)和参与P循环的微生物(如ACT)的生长,从而改变亚热带黄山松林土壤微生物群落结构。  相似文献   

11.
12.
2009年8月至9月期间在太平洋西部N1站和中部N2站进行现场营养盐加富培养实验。结果显示:N1站,浮游植物生物量对N或者P添加都有较强的响应,其中N+P+Si组和N+P组浮游植物长势迅速,叶绿素a从初始的0.03μg/L分别达到2.12μg/L和1.83μg/L,同时P先于N和Si之前被耗尽;说明N1站为N、P共同限制,P是首要限制因子。而N2站,浮游植物生物量仅对N、P共同添加有明显响应,N先于P和Si被浮游植物消耗殆尽。利用培养过程中营养盐比值变化推断,N1站浮游植物以低于Redfield ratio(16N∶1P)吸收N和P;而N2站浮游植物以高于Redfield ratio(16N∶1P)吸收N和P。这可能解释了太平洋西部的寡营养盐海域为潜在P限制,而在太平洋中部海域则为潜在N限制。  相似文献   

13.
We tested whether levels of soil available nitrogen (N) and phosphorus (P) control the composition and function of the soil microbial community in a Brown Chernozemic soil on the Canadian Prairie. Soil dissolved organic carbon, N and P, and microbial communities structure (phospholipid fatty acid profile) and function (enzyme activity) were evaluated in the fallow and first wheat (Triticum aestivum L. cv. AC Eatonia) phases of fallow-wheat-wheat rotations where the wheat received soil test recommended rates of mineral N and P fertilizers (+N+P), or where N (?N+P) or P (+N?P) fertilizer use was withheld for 37 years. Differential fertilization modified soil N and P availability, and microbial community structure. Low N level was a major constraint when a rapidly growing wheat crop (heading stage) was drawing on the resource, reducing both plant N uptake and soil microbial biomass-C in ?N+P soils. Available P level in +N?P soils was about half that measured in P-fertilized soils, but P did not limit plant productivity or microbial development at that time. Changes in the microbial community structure seemingly buffered the impact of lower P availability in +N?P soils. Phosphatase activity was not involved, but increased abundance of arbuscular mycorrhizal fungi might be associated with this effect. Low soil N availability explained lower specific denitrification and higher specific nitrogenase activities in ?N+P soil growing wheat. Higher denitrification activity in +N+P soil could be attributed to higher soil C level and fertilization-induced shifts observed in the structure of the soil microbial community. Irrespective of the fertility level of the soil, all microbial communities grew at the relative growth rate of 17% day?1 in a nutrient limitation assay that revealed no C, N or P limitation in these communities. We conclude that mineral fertilization, which modifies soil available N and P fertility, can be a selective force causing structural and functional shifts in the soil microbial community with a resulting impact on soil quality and nutrient fluxes.  相似文献   

14.
为研究生活污水处理后其受纳水体中浮游植物增长的氮磷限制,选取某生活污水处理系统的受纳水体为研究对象,依据我国《城镇污水处理厂污染物排放标准》(GB189182002)一级A标准(氨氮5 mg/L和磷0.5 mg/L)进行氮磷营养盐最高浓度和浓度梯度添加微宇宙实验模拟实验。最高浓度添加实验结果显示N、P双添加的实验组中3d后叶绿素a的浓度显著(P0.05)高于单独添加氮和单独添加磷实验组。因此,氮和磷是被研究水体浮游植物生长的共同限制因子。同时结果还暗示受纳水体接纳处理后的生活污水仍可能会造成浮游植物在短期内剧烈增长。浓度梯度添加实验结果显示,将磷控制在0.27 mg/L或者将氮控制在1.0 mg/L以下,可以有效降低被研究水体浮游植物的增长。据此可以进一步严格生活污水处理后的排放标准以降低受纳水体水华的风险。  相似文献   

15.
Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (<30 µm and >30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.  相似文献   

16.
1. Compared to lakes and streams, we know relatively little about the factors that regulate algae in freshwater wetlands. This discrepancy is particularly acute in boreal regions, where wetlands are abundant and processes related to climate change (i.e. increased permafrost collapse and soil weathering) are expected to increase nutrient inputs into aquatic systems. To investigate how accelerated nutrient inputs might affect algal structure and function in northern boreal wetlands, we added nitrogen, phosphorus and silica to mesocosms in an oligotrophic marsh in interior Alaska. 2. We conducted two in situ mesocosm enrichment experiments during consecutive summer growing seasons, each lasting 24 days. In 2007, we investigated the effects of +N, +P, +Si and +N+P+Si enrichment on benthic algal biomass (chlorophyll‐a, ash‐free dry mass, biovolume), chemistry (N : P ratio) and community composition. In 2008, we expanded our first experiment to investigate the effects +N+P, +N+Si, +P+Si and +N+P+Si on the same algal parameters as well as productivity (mg C m?2 h?1). 3. In both experiments, we measured water‐column dissolved organic carbon (DOC) inside treatment enclosures and related changes in DOC to standing algal biomass. 4. Benthic algal accrual did not increase following 24 days of enrichment with any nutrient alone or with P and Si together (+P+Si), but increased significantly with the addition of N in any combination with P and Si (+N+P, +N+Si, +N+P+Si). 5. Algal productivity (20 mg C m?2 h?1) increased between three‐ and seven‐fold (57–127 mg C m?2 h?1) with the addition of N in combination with any other nutrient (+N+P, +N+Si, +N+P+Si). Water‐column DOC concentration was significantly higher inside N‐combination treatments compared to the control during each season, and DOC increased linearly with benthic algal biomass in 2007 (r2 = 0.89, P < 0.0001) and 2008 (r2 = 0.74, P < 0.0001). 6. Taxonomic composition of the wetland algal community responded most strongly to N‐combination treatments in both seasons. In 2007, there was a significant shift from Euglena and Mougeotia in the control treatment to Chroococcus and Gloeocystis with +N+P+Si enrichment, and in 2008, a Mougeotia‐dominated community was replaced by Gloeocystis in the +N+P treatment and by Nitzschia in +N+Si and +N+P+Si treatments. 7. Together, these data provide several lines of evidence for co‐limitation, and the central importance of N as a co‐limiting nutrient for the wetland algal community. Changes in algal dynamics with increased nutrient concentrations could have important implications for wetland food webs and suggest that algae may provide a functional link between increasing nutrient inputs and altered wetland carbon cycling in this region.  相似文献   

17.
The effects of nutrients and dissolved organic matter (DOM) on the response of phytoplankton community structure to ultraviolet radiation (UVR) was studied using natural phytoplankton assemblages from Lake Giles (Northeastern Pennsylvania), a temperate, oligotrophic, highly UVR-transparent lake. Microcosm experiments were conducted in 1-l bags in the spring and summer. A factorial design was used, with two UVR treatments (ambient and reduced), two nutrient treatments (control with no nutrients added, and nitrogen and phosphorus addition together), and two DOM treatments (control of 1 mg l−1 and doubled). In April, UVR affected the overall phytoplankton community structure, causing a shift in the dominant species. Significant interactive effects of UVR × nutrients and UVR × DOM were found on total phytoplankton biovolumes. In July, all taxa responded positively to the N + P addition, and were affected differentially by the UVR treatments. The initial communities varied in April and July, but Synura sp. and Chroomonas sp. were present in both seasons. Synura sp. responded positively to the addition of DOM in April and the reduction of UVR in July. Chroomonas sp. responded positively to the reduction of UVR in April and the addition of nutrients in July. The differential sensitivity of these two species suggests that changing environmental factors between spring and summer promoted differences in the relative importance of UVR in changing phytoplankton community structure. Handling editor: Luigi Naselli-Flores  相似文献   

18.
Enriched bottle experiments were conducted in situ during winter (January and February) and summer (July and August) 2001 to examine the effects of nutrient enrichments (+ N, + P and + NP) on phytoplankton in Bizerte Lagoon, Tunisia. Chlorophyll a (Chl a), ranging from 3.05 μg L−1 in winter to 4.52 μg L−1 in summer, was dominated by the small size-faction (<5 μm) during both seasons. However, the contribution of the large size-fraction (5-200 μm) to Chl a increased from winter (26%) to summer (37%). Similarly, the carbon biomass of the 5-200 μm algae increased during the July/August period that was characterised by the high proliferation of several diatom taxa. In winter, N was the limiting element for phytoplankton growth. Its addition alone (+ N) or with P (+ NP) increased both the <5 μm and 5-200 μm Chl a concentrations. There was no change in the phytoplankton size structure, with the small cells dominating the final algal biomass in all treatments after 5 days. In summer, N and P limited the phytoplankton, but small and large algae exhibited diverse responses to different nutrient enrichments: addition of P increased the Chl a only in the 5-200 μm fraction, the + N treatment enhanced both size classes, and the NP fertilisation mostly stimulated the biomass of large cells. Consequently, the N and P addition in summer was followed by a significant change in the phytoplankton size structure, since both size-fractions contributed equally to the final Chl a biomass. Within the 5-200 μm algal community, various taxa had diverse responses to the nutrient supply during both seasons, leading to a change in the final community composition. The autotrophic flagellates appeared to grow well under N-deficient conditions. In contrast, diatom growth and biomass were mostly stimulated by the N enrichment while dinoflagellates exhibited the highest increase in their growth and biomass with P fertilisation. Our results suggest that the increasing anthropogenic supply of nutrients in the lagoon may influence algal dynamics as well as productivity in different ways depending on the nutrient composition.  相似文献   

19.
  1. Phosphorus (P) usually is the primary limiting nutrient of phytoplankton biomass, but attention towards nitrogen (N) and trace nutrients, such as iron (Fe), has surfaced. Additionally, N-fixing cyanobacterial blooms have been documented to occur in N-rich, P-poor waters, which is counterintuitive from the paradigm that low N and high P promotes blooms. For example, Lake Erie's central basin has Dolichospermum blooms when nitrate concentrations are high, which raises questions about which nutrient(s) are selecting for Dolichospermum over other phytoplankton and why an N-fixer is present in high N waters?
  2. We conducted a 4-year (2014–2017) study in Lake Erie's central basin to determine which nutrient (P, N, or trace nutrients such as Fe, molybdenum [Mo], and boron [B]) constrained chlorophyll concentration, phytoplankton biovolume, and nitrate assimilation using nutrient enrichment bioassays. The enriched lake water was incubated in 1-L bottles in a growth chamber programmed at light and temperatures of in situ conditions for 4–7 days. We also quantified heterocytes when N-fixing cyanobacteria were present.
  3. Compared to the non-enriched control, the P-enriched (+P) treatment had significantly higher chlorophyll and phytoplankton biovolume in c. 75% of experiments. Combination enrichments of P with ammonium-N, nitrate-N, Fe, Mo, and B were compared to the +P treatment to determine secondary limitations. +P and ammonium-N and +P nitrate-N resulted in higher chlorophyll in 50% of experiments but higher phytoplankton biovolume in only 25% of experiments. These results show that P was the primary limiting nutrient, but there were times when N was secondarily limiting.
  4. Chlorophyll concentration indicated N secondary limitation in half of the experiments, but biovolume indicated only N secondary limitation in 25% of the experiments. To make robust conclusions from nutrient enrichment bioassays, both chlorophyll and phytoplankton biovolume should be measured.
  5. The secondary effects of Fe, Mo, and B on chlorophyll were low (<26% of experiments), and no secondary effects were observed on phytoplankton biovolume and nitrate assimilation. However, +P and Fe resulted in more chlorophyll than +P in experiments conducted during Dolichospermum blooms, and +P and B significantly increased the number of heterocytes in Dolichospermum. These results indicate that low Fe availability might select for Dolichospermum, and low B constrains heterocyte formation in the central basin of Lake Erie. Furthermore, these results could apply to other lakes with high N and low P where diazotrophic cyanobacterial blooms occur.
  相似文献   

20.
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号