首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了了解微表层浮游植物对氮(N)、磷(P)营养盐的响应, 于2013 年6 月、7 月和8 月采集了大亚湾海域微表层海水,设置两组N、P 浓度梯度(N1: 35 μmol·L–1, N2: 70 μmol·L–1, P1: 2.2 μmol·L–1, P2: 4.4 μmol·L–1), Si 为35 μmol·L–1, 进行N、P 添加的正交实验, 观察微表层浮游植物的生长潜力, 并在实验开始前、实验中期(培养2-4 d)以及实验结束时(培养7-10 d)测定培养液中无机氮(DIN)、无机磷(DIP)和硅酸盐(DSi)含量. 实验结果显, 3 个月份的微表层水样均以高N 高P 的N2P2 实验组生长最好, 而低N 低P(N1P1)、低N 高P(N1P2)、高N 低P(N2P1)组的生长状态相近; 而添加单一营养盐的4 个实验组(N1、N2、P1、P2)不能促进微表层浮游植物的生长。同时添加N、P 后, 浮游植物能快速生长, 在培养的2-4 d 内达到生物量的最高峰. 与此同时, 营养盐含量也在生长较好的同时添加N、P 组迅速下降, 特别是在N2P2 组中尤为明显, 说明浮游植物的快速生长需要消耗大量的营养盐. 研究结果表明, 自然环境中N、P 营养盐的输入能够促使浮游植物生物量迅速增加,而单独添加单一营养盐并不能促使浮游植物的生长。  相似文献   

2.
为探讨氮和磷对浮游植物生长的限制作用,2013年夏季在南沙群岛海域西南大陆架S1站(9°30'N,109°30'E)和曾母暗沙附近S2站(4°30'N,109°30'E)进行了添加N、P营养盐的现场加富实验。结果显示:加富N和N+P后,叶绿素a(Chl-a)含量显著增长(P0.05),其中,S1站点叶绿素a从初始的0.05 mg·m-3分别达到0.29和0.80 mg·m-3;S2站点叶绿素a从初始的0.09 mg·m-3则分别达到0.79和1.02 mg·m-3,说明添加N或N+P可以促进浮游植物增长。在加富P后,2个站点的叶绿素a浓度均未显著增加,说明单独添加磷不能促进浮游植物的增长。限制因子分析表明,S1站点的浮游植物生长具N限制,而S2站点浮游植物生长的首要限制元素为N,其次为P。水体中N/P范围为5~25时最适应浮游植物生长。相关性分析结果表明,N/P值与Chl-a浓度和浮游植物的生长速度(R)无显著相关性,表明该2个站点水体的N/P值不能单独控制浮游植物的生长。  相似文献   

3.
为了解P限制水体中浮游植物群落对N、P营养盐的响应,通过添加N、P营养盐设置N/P梯度,对广东省流溪河水库中的浮游植物群落进行了研究。结果表明,添加N、P显著促进浮游植物的生长,浮游植物群落受P盐的影响比N盐显著;藻类的种属特异性导致浮游植物群落对氮磷营养盐的响应不一致,浮游植物总丰度与N/P比值不相关,其中隐球藻(Aphanocapsa sp.)、拟柱胞藻(Cylindrospermopsis raciborskii)和假鱼腥藻(Pseudanabaena sp.)等蓝藻适合在高N高P条件下生长,双对栅藻(Scenedesmus bijuga)等绿藻优势种偏好中N高P环境,而曲壳藻(Achnanthes sp.)、小环藻(Cyclotella sp.)等硅藻在低N低P的环境下占据优势;P浓度为0.8~2.0μmol/L时存在诱导浮游植物碱性磷酸酶活性的阈值,当P浓度大于2.0μmol/L时则抑制酶活性; P浓度为2.0μmol/L可能是浮游植物维持生长的最适浓度,浮游植物N/P维持动态平衡;藻细胞N/P、C/P与水体P浓度、N/P呈显著正相关,而藻细胞C/N受N影响更明显(P0.05)。这为热带亚热带水库的水质管理提供了理论参考。  相似文献   

4.
南海北部浮游植物生长对营养盐的响应   总被引:18,自引:0,他引:18  
彭欣  宁修仁  孙军  乐凤凤 《生态学报》2006,26(12):3959-3968
2004年夏季作者在南海北部海域研究了浮游植物生长的营养动力学,结合物理-化学过程对浮游植物生物量分布的影响与机制进行了研究,阐明了水平对流和中尺度涡对营养盐分布的影响及浮游植物生长和现存生物量对其的响应。受西南季风和东向沿岸流作用所形成的Ekman输送的影响,南海北部海岸带表层海水作离岸运动,使深层富含营养盐的冷水爬坡涌升到表层来补充,激发浮游植物生物量迅速增长。海区反气旋涡使海水辐聚下沉,造成水体具高温、低盐、高溶解氧浓度、低营养盐浓度和低浮游植物生物量。同时通过现场营养盐加富试验,发现该海域营养盐是浮游植物生长的主要限制因子,而且是多种营养元素共同限制了浮游植物的生长,添加单一的营养盐并不能促进浮游植物的生长。在生物量出现增长的试验组中,营养盐添加不仅促使浮游植物生物量的增长,而且也改变了浮游植物的粒级结构和群落结构。例如,在站S1008,培养前叶绿素a浓度为0.28 mg.m-3,加富培养60 h后浮游植物生物量在NP和NPSi的试验组中有显著的增加,叶绿素a浓度分别达1.07 mg.m-3和1.19 mg.m-3;培养前粒度分级叶绿素a主要以Pico级份占优势,而加富试验结束后,在NP和NPSi的试验组以Nano级份占优势,其它试验组仍以Pico级份占优势;同时,在培养后生物量出现增长的试验组,浮游植物群落的优势类群从甲藻向硅藻演替。  相似文献   

5.
黄海和东海营养盐分布及其对浮游植物的限制   总被引:48,自引:3,他引:45  
王保栋 《应用生态学报》2003,14(7):1122-1126
根据1997~1999年黄海和东海4个季节的现场调查资料,分析探讨了黄海、东海的营养盐分布特征及其对浮游植物生长的限制状况.结果表明,在长江口以东及其东北部海域终年存在一个范围很大的营养盐高值区.分析表明,这些营养盐主要来自长江冲淡水的扩展及苏北沿岸流的输送.此外,还获得了1998年长江流域特大洪水期间,迄今被观测到的长江冲淡水中营养盐的最大扩展范围,计算并研究了黄海、东海上层水中Si/N/P比值,结果表明,黄东海上层水中Si/N比值较高,Si不会成为黄东海浮游植物生长的限制因子;但在南黄海南部尤其是西南部、东海近岸及长江口以东海域,N/P比值很高(>30),说明与一般海洋环境的情况不同,黄海、东海有很大一部分海域浮游植物的生长受磷限制,而不是受氮限制.  相似文献   

6.
盔形溞Daphnia galeata和舌状叶镖Phyllodiaptomus tunguidus是流溪河水库的两种大型的滤食物性的浮游动物,P.tunguidus也是中国特有种,他们的牧食直接影响浮游植物种类组成和群落结构.为了解这两种浮游动物在自然水体中对浮游植物牧食的作用及营养盐水平对牧食作用的影响,将D.galeata和P.mnguidus 4.4 ind.L-1的密度,分别在两个营养水平(不添加与添加营养盐)中用4.5L的透明塑料瓶培养10天(2008年3月28-4月8日).在不添加营养盐的实验中,水样为用64um孔径的筛绢过滤后的水库水,在添加营养盐的实验中,为过滤后的水样再加入KH2PO4和NaNO3,使TN:TP=16:1(TN=34.86 μmol·L-1,TP=2.18 μmol·L-1).10天后,计数和分析浮游植物四个粒径级别(<20μm,20-30μm,30-50μm,>50μm)和各门类及优势种类的生物量组成,比较两组动物在两种营养状态中对浮游植物生物量的影响. 在不添加营养盐的实验中,两种浮游动物对浮游植物总生物量的抑制均不明显,但<30μm的浮游植物生物量均下降,且D.galeata处理组中,小于20μm的浮游植物生物量低于P.tunguidus处理组,P.tunguidus处理组中20-30μm的浮游植物生物量低于D.galeata组,说明两种浮游动物对<30μm的浮游植物均有抑制作用,但D.galeata对<20μm的浮游植物抑制强于P.tunguidus而P.tunguidus对20-30μm的浮游植物抑制强于D.galeata. 在添加营养盐的实验中,营养盐对浮游植物生物量,尤其对<20μm的浮游植物生物量的促进作用明显.但两种浮游动物对浮游植物的抑制作用在不同种类之间产生差异.D.galeataa处理组的浮游植物总生物量明显高于P.tunguidus组,表明P.tunguidus对浮游植物的抑制作用强于D.galeata.D.galeata处理组中,蓝藻生物量比例(15%)远低于绿藻(41%)和硅藻(37%),但在P.tunguidus组蓝藻生物量比例(36%)远高于绿藻(18%)和硅藻(32%),与不添加营养盐实验的t检验表明D.galeata对绿藻和蓝藻抑制明显,而P.tunguidus对绿藻和硅藻的抑制明显(t-test,p>0.05).D.galeata对衣藻chlamydgmonas sp.,绿球藻chlorococcum sp.,单细胞蓝藻抑制作用明显,而P.tunguidus对小球藻chlorella sp.,衣藻chlamydomonas sp.,绿球藻chlorococcum sp.,小环藻cyclotella sp.,曲壳藻achnanthes sp.,针杆藻Syneara sp.的抑制明显. 实验结果表明两种浮游动物影响不同的浮游植物种类,对浮游植物的群落结构的影响具有差异.  相似文献   

7.
盔形溞 Daphnia galeata 和舌状叶镖 Phyllodiaptomus tunguidus 是流溪河水库的两种大型的滤食物性的浮游动物,P. tunguidus 也是中国特有种,他们的牧食直接影响浮游植物种类组成和群落结构。为了解这两种浮游动物在自然水体中对浮游植物牧食的作用及营养盐水平对牧食作用的影响,将 D. galeata 和 P. tunguidus 以 4.4 ind.L-1 的密度,分别在两个营养水平(不添加与添加营养盐)中用 4.5L 的透明塑料瓶培养 10 天(2008 年 3 月 28-4 月 8 日)。在不添加营养盐的实验中,水样为用 64um 孔径的筛绢过滤后的水库水,在添加营养盐的实验中,为过滤后的水样再加入 KH2PO4 和 NaNO3,使 TN:TP=16:1(TN=34.86 μ mol?L-1,TP=2.18 μ mol?L-1)。10 天后,计数和分析浮游植物四个粒径级别(<20μm, 20-30μm, 30-50μm, >50μm)和各门类及优势种类的生物量组成,比较两组动物在两种营养状态中对浮游植物生物量的影响。在不添加营养盐的实验中,两种浮游动物对浮游植物总生物量的抑制均不明显,但<30μm的浮游植物生物量均下降,且 D. galeata 处理组中,小于 20μm的浮游植物生物量低于 P. tunguidus 处理组,P. tunguidus 处理组中20-30μm的浮游植物生物量低于 D. galeata 组,说明两种浮游动物对<30μm的浮游植物均有抑制作用,但 D. galeata 对<20μm的浮游植物抑制强于 P. tunguidus 而 P. tunguidus 对 20-30μm的浮游植物抑制强于 D. galeata。在添加营养盐的实验中,营养盐对浮游植物生物量,尤其对<20μm的浮游植物生物量的促进作用明显。但两种浮游动物对浮游植物的抑制作用在不同种类之间产生差异。D. galeataa 处理组的浮游植物总生物量明显高于P. tunguidus 组,表明P. tunguidus 对浮游植物的抑制作用强于D. galeata。D. galeata 处理组中,蓝藻生物量比例(15%)远低于绿藻(41%)和硅藻(37%),但在P. tunguidus 组蓝藻生物量比例(36%)远高于绿藻(18%)和硅藻(32%),与不添加营养盐实验的t检验表明D. galeata 对绿藻和蓝藻抑制明显,而P. tunguidus对绿藻和硅藻的抑制明显(t-test,p>0.05)。D. galeata 对衣藻chlamydomonas sp.,绿球藻chlorococcum sp.,单细胞蓝藻抑制作用明显,而P. tunguidus对小球藻chlorella sp.,衣藻chlamydomonas sp.,绿球藻 chlorococcum sp.,小环藻 cyclotella sp.,曲壳藻 achnanthes sp.,针杆藻 Synedra sp.的抑制明显。实验结果表明两种浮游动物影响不同的浮游植物种类,对浮游植物的群落结构的影响具有差异。  相似文献   

8.
灌河口邻近海域春季浮游植物的生态分布及其营养盐限制   总被引:2,自引:0,他引:2  
方涛  贺心然  冯志华  陈斌林 《生态学报》2013,33(15):4567-4574
2011年4月通过灌河口邻近海域的现场调查及营养加富培养实验,研究了春季灌河口邻近海域浮游植物生态分布特征以及硝酸盐、磷酸盐对浮游植物生长的限制作用,结果表明:共发现浮游植物68种,其中硅藻61种,优势度最高的为中肋骨条藻(Skeletonema costatum,Y=0.53),各个站位浮游植物的丰度介于0.84× 106-2.25×106个/L,均值为1.54×106个/L,种类范围为29-39种,均值为35种,叶绿素a浓度呈现近岸高外海低的特征,在2.66-6.67 μg/L变化,均值为3.89 μg/L,多样性指数介于2.60-3.79,均值为3.20,海域环境基本适宜浮游植物的生长;调查海域磷酸盐浓度的范围为0.35-0.90μmol/L,均值为0.58μmol/L,亚硝酸盐浓度范围为1.57-3.93 μmol/L,均值为3.08 μmol/L,两者分布均具有近岸高外海低的特征;铵盐浓度范围为3.145.43μmol/L,均值为3.95 μmol/L,其分布则是近岸低外海高;硝酸盐浓度严重偏高,在31.21-37.00μmol/L之间变化,均值为34.55 μmol/L,导致调查区域具有高N/P比(42-112),且浮游植物叶绿素a与磷酸盐浓度有显著的正相关(R2=0.80),而与无机氮线性关系不明显(R2=0.11);在P加富培养实验中,磷酸盐在3个培养组(对照,+P,++P)中的比吸收速率分别为0.36、0.43、0.51d-1,加P促进了P本身的吸收,硝酸盐和亚硝酸盐的吸收也得以促进,但没有磷酸盐那么显著,而铵盐浓度基本呈增加趋势,P的添加也促进了藻类的生长,培养结束后叶绿素a浓度最大值分别为77.24、90.57、96.49μg/L.在N加富培养实验中,硝酸盐的比吸收速率分别为0.39、0.049、0.025d-1,加N未促进硝酸盐本身的吸收,磷酸盐浓度在3个实验组变化曲线相似,其吸收也没有得到促进,亚硝酸盐在加N组中浓度是增加的,培养结速后加N组(+N,++N)叶绿素a浓度最大值分别为72.31、69.62μg/L,都小于对照组,N的添加也未促进藻类的生长.上述研究表明了春季灌河口邻近海域浮游植物的生长主要受到P的限制,而不是N限制.  相似文献   

9.
通过2010年8月至2011年7月对洞头海域网采浮游植物的逐月调查,共鉴定出浮游植物5门187种,主要由硅藻(143种)和甲藻(40种)组成,金藻、绿藻和蓝藻偶有检出。全年共发现20种优势种,其中硅藻16种,甲藻3种,蓝藻1种。浮游植物丰度、种类数、Shannon-Wiener指数(H’)和Pielou均匀度指数(J)月变化均较大。典范对应分析(CCA)显示,影响浮游植物群落的主要因子为溶解硅(DSi)、溶解无机氮(DIN)、氮磷比(N∶P)、溶解无机磷(DIP)、硅磷比(Si∶P)、盐度和温度。台湾暖流、闽浙沿岸流和瓯江径流也是影响本海域浮游植物变化的重要因素:6—9月,台湾暖流影响较大,调查海域外海暖水性种类增多;其他各月闽浙沿岸流和瓯江径流影响较大,调查海域既有近岸低盐种类,也有半咸水、淡水种类。结合历史数据分析表明,近30年来洞头海域营养盐结构已经发生较大变化,表现为硝酸盐浓度急剧升高,由1981—1982年的12.89μmol/L升至2010—2011年的52.63μmol/L,N∶P由19.1∶1升至51.8∶1。同时浮游植物群落也有较大改变,表现为浮游植物细胞丰度的增加(由5.8×105个/m3上升至39.2×106个/m3)和优势种的更替(由圆筛藻Coscinodiscus spp.向骨条藻Skeletonema spp.演替)。  相似文献   

10.
盔形涵Daphnia galeata和舌状叶镖Phyllodiaptomus tunguidus是流溪河水库的两种大型的滤食物性的浮游动物,Ptunguidus也是中国特有种,他们的牧食直接影响浮游植物种类组成和群落结构。为了解这两种浮游动物在自然水体中对浮游植物牧食的作用及营养盐水平对牧食作用的影响,将D.galeata和Ptunguidus以4.4ind.L^-1的密度,分别在两个营养水平(不添加与添加营养盐)中用4.5L的透明塑料瓶培养10天(2008年3月28-4月8日)。在不添加营养盐的实验中,水样为用64um孔径的筛绢过滤后的水库水,在添加营养盐的实验中,为过滤后的水样再加入KH2P04和NaNO3,使TN:TP=16:1(TN=34.86μmol&#183;L^-1,TP=2.18μmol&#183;L^-1)。10天后,计数和分析浮游植物四个粒径级别(〈20μm,20—30μm,30.50μm,〉50μm)和各门类及优势种类的生物量组成,比较两组动物在两种营养状态中对浮游植物生物量的影响。在不添加营养盐的实验中,两种浮游动物对浮游植物总生物量的抑制均不明显,但〈30μm的浮游植物生物量均下降,且D.galeata处理组中,小于20μm的浮游植物生物量低于Ptunguidus处理组,Ptunguidus处理组中20-30μm的浮游植物生物量低于D.galeata组,说明两种浮游动物对〈30Ixm的浮游植物均有抑制作用,但D.galeata对〈20μm的浮游植物抑制强于Ptunguidus而Ptunguidus对20.30μm的浮游植物抑制强于D.galeata。在添加营养盐的实验中,营养盐对浮游植物生物量,尤其对〈20μm的浮游植物生物量的促进作用明显。但两种浮游动物对浮游植物的抑制作用在不同种类之间产生差异。Dgaleataa处理组的浮游植物总生物量明显高于Ptunguidus组,表明Ptunguidus对浮游植物的抑制作用强于Dgaleata。Dgaleata处理组中,蓝藻生物量比例(15%)远低于绿藻(41%)和硅藻(37%),但在Ptunguidus组蓝藻生物量比例(36%)远高于绿藻(18%)和硅藻(32%),与不添加营养盐实验的t检验表明Dgaleata对绿藻和蓝藻抑制明显,而Ptunguidus对绿藻和硅藻的抑制明显(t-test,p〉0.05)。Dgaleata对衣藻chlamydomonassp.,绿球藻chlorococcumsp.,单细胞蓝藻抑制作用明显,而Ptunguidus对小球藻chlorellasp.,衣藻chlamydomonassp.,绿球藻chlorococcumsp.,小环藻cyclotellasp.,曲壳藻achnanthessp.,针杆藻Synedrasp.的抑制明显。实验结果表明两种浮游动物影响不同的浮游植物种类,对浮游植物的群落结构的影响具有差异。  相似文献   

11.
通过2009年6月调查航次,获得了营养盐等参数断面分布,表明咸淡水混合是控制营养盐分布的主要因素。为了解不同盐度梯度下浮游植物生长与营养盐吸收的关系,采集两个站位水样分别代表长江冲淡水(C1站)和外海水(I10站),按C1站水样比例,分100%、75%、50%、25%、0%不同比例混合进行现场模拟咸淡水混合培养,有以下认识:(1)平行结果表明培养过程中活体荧光极大值在100%混合组,且淡水比例越低,指数生长期0—48 h内生长速率越低,100%、75%、50%、25%组分别为1.18/d、1.12/d、1.14/d、0.77/d;(2)低于26盐度的水体中PO34-在48 h内可被迅速消耗而产生限制作用,是控制浮游植物生长的潜在限制因子;(3)除0%组外,各混合组DIN/P(DIN:溶解无机氮,Dissolved Inorganic Nitrogen,DIN=NO3-+NO-2+NH4+)比值在浮游植物指数生长期有升高趋势,100%组DIN/P比值增加了一倍。各组培养48 h后DIN/Si比值逐渐降低至原来的0.7左右,初始DIN/Si小于一定时间内硅藻吸收的(ΔDIN/ΔSi)比,是造成各组DIN/Si比值减小的原因。以上结果表明咸淡水混合过程中形成的营养盐梯度可造成浮游植物生长程度和速率差异,且可因局部浮游植物旺发而改变海水营养结构。  相似文献   

12.
This study investigated the role of N, P and Si enrichments on phytoplankton in the Bizerte Lagoon (southwestern Mediterranean Sea, Tunisia) during March, June, August, October and December 2004. Polycarbonate bottles were enriched with different nutrients according to four treatments N:Si:P ratios [+NSi/-P (40:40:1), +P/-NSi (20:20:2,5), +NP/-Si (16:0:1) and +Si/-NP (16:32:1)] and incubated in situ during six days. Chl a and carbon biomass of phytoplankton varied significantly during the course of months, with the highest levels recorded in summer (4-4.4 microg Chl a L(-1) or 1126-1721 microg C L(-1)). Dinoflagellates dominated the initial phytoplankton communities, except in August, when diatoms represented a high fraction of microalgae (48%). Enrichment experiments induced significant increases in Chl a and in the final phytoplankton carbon biomasses. In summer (June/August), Si was the main limiting element for phytoplankton. Diatoms strongly responded to +Si/-NP and +NSi/-P enrichments and dominated the final phytoplankton communities (52-61%) in both treatments. Si played the most important role in the growth and development of diatoms. The biomasses and growth rates of dinoflagellates were significantly stimulated by +P/-NSi and +NP/-Si enrichments. After 6 days, dinoflagellates represented more than 70% of the total phytoplankton biomass in samples subjected to these treatments. Moreover, the addition of +P/-NSi increased the biomasses of several dinoflagellates. This suggests that dinoflagellates were mostly controlled by P availability. Unlike diatoms and dinoflagellates, flagellates showed weak responses to nutrient treatments during only some months of the year. The results showed that phytoplankton dynamics in the lagoon were influenced by nutrients in different manners.  相似文献   

13.
Enriched bottle experiments were conducted in situ during winter (January and February) and summer (July and August) 2001 to examine the effects of nutrient enrichments (+ N, + P and + NP) on phytoplankton in Bizerte Lagoon, Tunisia. Chlorophyll a (Chl a), ranging from 3.05 μg L−1 in winter to 4.52 μg L−1 in summer, was dominated by the small size-faction (<5 μm) during both seasons. However, the contribution of the large size-fraction (5-200 μm) to Chl a increased from winter (26%) to summer (37%). Similarly, the carbon biomass of the 5-200 μm algae increased during the July/August period that was characterised by the high proliferation of several diatom taxa. In winter, N was the limiting element for phytoplankton growth. Its addition alone (+ N) or with P (+ NP) increased both the <5 μm and 5-200 μm Chl a concentrations. There was no change in the phytoplankton size structure, with the small cells dominating the final algal biomass in all treatments after 5 days. In summer, N and P limited the phytoplankton, but small and large algae exhibited diverse responses to different nutrient enrichments: addition of P increased the Chl a only in the 5-200 μm fraction, the + N treatment enhanced both size classes, and the NP fertilisation mostly stimulated the biomass of large cells. Consequently, the N and P addition in summer was followed by a significant change in the phytoplankton size structure, since both size-fractions contributed equally to the final Chl a biomass. Within the 5-200 μm algal community, various taxa had diverse responses to the nutrient supply during both seasons, leading to a change in the final community composition. The autotrophic flagellates appeared to grow well under N-deficient conditions. In contrast, diatom growth and biomass were mostly stimulated by the N enrichment while dinoflagellates exhibited the highest increase in their growth and biomass with P fertilisation. Our results suggest that the increasing anthropogenic supply of nutrients in the lagoon may influence algal dynamics as well as productivity in different ways depending on the nutrient composition.  相似文献   

14.
为研究不同外源营养负荷对水体浮游藻类群落结构特征的影响, 于2010年12月至2012年6月在亚热带长江流域的4个池塘中开展了氮磷营养添加实验。实验设置4个处理, 即加氮加磷(+N+P)、只加磷(?N+P)、只加氮(+N?P)和氮、磷都不加(?N?P)(对照)。从种类来看, 各种处理对浮游藻类种类数的影响不大, 各处理中种类数相差不多, ?N+P、+N+P、+N?P和?N?P处理中浮游藻类种类数分别为75种、79种、75种和75种。各处理均是绿藻门种类最多, 其次是蓝藻门。从功能群来看, ?N+P处理的中、富营养型藻类占比和+N+P处理的相差不多, 二者均高于2个未加磷处理(+N?P和?N?P处理)的。+N?P处理的贫营养型藻类占比比+N+P处理的高, 甚至高于?N?P处理的。研究结果表明减氮不能控制藻类群落的中、富营养型藻类数量, 只控磷能够推动浮游藻类群落从中-富营养型向贫营养型演替。这一结论有望为制定富营养化治理的氮管理策略提供一定的理论依据。  相似文献   

15.
Phosphorus (P) availability limits plant growth in many ecosystems. The ability of plants to explore for soil P is often impaired by nonresource stressors. Understanding the effects of these stressors on P acquisition in oligotrophic environments is critical in predicting species dominance. Growth and nutrient responses of Eleocharis cellulosa to redox intensity and phosphate level were evaluated under three redox potentials (Eh) and three phosphate (PO(4)) levels (P). Although low Eh (-150 mV) decreased root length at low P, Eh did not affect shoot height, relative growth rate (RGR), shoot elongation, photosynthesis, or biomass of E. cellulosa. Low PO(4) (10 μg P?·?L(-1)) strongly inhibited growth. Shoot height, RGR, elongation, photosynthesis, and biomass were lower at 10 μg P?·?L(-1) than at 80 or 500 μg P?·?L(-1). None of the growth variables, except the ratio of root-supported biomass to root biomass, significantly differed between the 80 and 500 μg P?·?L(-1) treatments. At low P, plants allocated relatively more biomass to roots than to shoots, compared to the medium and high P levels. Eleocharis cellulosa is well adapted to flooded conditions that lower soil Eh, and elevated PO(4) levels further promote its growth potential.  相似文献   

16.
Diverse measurements of nutrient status indicators were used to test the severity of physiological phosphorus (P) limitation of phytoplankton among lake systems ranging from oligotrophic to eutrophic, based on P and chlorophyll a (Chl a) concentrations. Metabolic assays and particulate nutrient ratios were used to estimate nutrient status at sites located in Lake Erie, Lake Ontario and Lake Huron. Variable fluorescence ratios (F v/F m), relative electron transport rates and their response to irradiance were measured by the pulse-amplitude-modulated fluorometer. Under summer stratified conditions, P deficiency was strongest in the oligotrophic sites and nitrogen (N) status indicators and Chl a variable parameters revealed no severe N deficiency. Nutrient amendment assays showed positive associations with P additions and Chl a fluorescence parameters at P-deficient sites. In the most oligotrophic sites, N additions revealed a modest increase only detected by the Chl a fluorescence parameters. Phytoplankton communities were also associated with nutrient status, where chrysophytes and cryptophytes were important in P-deficient sites and cyanobacteria, phyrrophyta, and diatoms were prevalent in nutrient-rich sites. The results confirmed that Chl a fluorescence parameters can reveal P deficiency and indicate its severity among the range of trophic status in aquatic systems.  相似文献   

17.
夏季西南印度洋叶绿素a分布特征   总被引:1,自引:0,他引:1  
分析了2011年1月西南印度洋叶绿素a的分布特征及其粒级结构,并结合水动力学环境和营养盐数据探讨了其主要影响因素。结果表明,西南印度洋副热带涡流(IOSG)区表层叶绿素a浓度较低,不超过0.07 mg/m3,次表层叶绿素a浓度最大值所在水层较深,超过100 m;副热带聚集区(SCZ)表层叶绿素a浓度较高(0.164—0.247 mg/m3),次表层叶绿素a浓度最大值出现在50—70 m层。硝酸盐是该海区浮游植物生长的主要限制因素。微微型(pico)粒级的浮游植物占绝对优势,所有站位其对总叶绿素a的平均贡献率为71.1%,微型(nano)粒级次之(24.2%),小型(net)粒级所占比例最小(4.7%),其中IOSG区pico粒级对总叶绿素a的平均贡献率为77.9%,SCZ的pico粒级对总叶绿素a的平均贡献率为66.7%。IOSG区和SCZ海区之间水动力学环境的不同,可能导致了这两个海区叶绿素a的分布特征及粒级结构的较大差异。  相似文献   

18.
1. Compared to lakes and streams, we know relatively little about the factors that regulate algae in freshwater wetlands. This discrepancy is particularly acute in boreal regions, where wetlands are abundant and processes related to climate change (i.e. increased permafrost collapse and soil weathering) are expected to increase nutrient inputs into aquatic systems. To investigate how accelerated nutrient inputs might affect algal structure and function in northern boreal wetlands, we added nitrogen, phosphorus and silica to mesocosms in an oligotrophic marsh in interior Alaska. 2. We conducted two in situ mesocosm enrichment experiments during consecutive summer growing seasons, each lasting 24 days. In 2007, we investigated the effects of +N, +P, +Si and +N+P+Si enrichment on benthic algal biomass (chlorophyll‐a, ash‐free dry mass, biovolume), chemistry (N : P ratio) and community composition. In 2008, we expanded our first experiment to investigate the effects +N+P, +N+Si, +P+Si and +N+P+Si on the same algal parameters as well as productivity (mg C m?2 h?1). 3. In both experiments, we measured water‐column dissolved organic carbon (DOC) inside treatment enclosures and related changes in DOC to standing algal biomass. 4. Benthic algal accrual did not increase following 24 days of enrichment with any nutrient alone or with P and Si together (+P+Si), but increased significantly with the addition of N in any combination with P and Si (+N+P, +N+Si, +N+P+Si). 5. Algal productivity (20 mg C m?2 h?1) increased between three‐ and seven‐fold (57–127 mg C m?2 h?1) with the addition of N in combination with any other nutrient (+N+P, +N+Si, +N+P+Si). Water‐column DOC concentration was significantly higher inside N‐combination treatments compared to the control during each season, and DOC increased linearly with benthic algal biomass in 2007 (r2 = 0.89, P < 0.0001) and 2008 (r2 = 0.74, P < 0.0001). 6. Taxonomic composition of the wetland algal community responded most strongly to N‐combination treatments in both seasons. In 2007, there was a significant shift from Euglena and Mougeotia in the control treatment to Chroococcus and Gloeocystis with +N+P+Si enrichment, and in 2008, a Mougeotia‐dominated community was replaced by Gloeocystis in the +N+P treatment and by Nitzschia in +N+Si and +N+P+Si treatments. 7. Together, these data provide several lines of evidence for co‐limitation, and the central importance of N as a co‐limiting nutrient for the wetland algal community. Changes in algal dynamics with increased nutrient concentrations could have important implications for wetland food webs and suggest that algae may provide a functional link between increasing nutrient inputs and altered wetland carbon cycling in this region.  相似文献   

19.
The composition and abundance of mycosporine-like amino acids (MAAs) were investigated in the surface waters along a 13,000-km meridional transect (52° N to 45° S) in the Atlantic Ocean (Atlantic Meridional Transect programme: Cruise AMT 18: 4/10/2008-10/11/2008). MAAs were ubiquitous along the transect, although the composition of the MAAs was variable. Highest concentrations were in the far south (below 40° S; MAA >1 μg L(-1)) and in north subtropical equatorial region (NER: 0-25° N; MAA up to 0.8 μg L(-1)). Highest MAA relative to chlorophyll-a occurred in the NER (MAA/chl-a ratio between 2 and 5). MAA/chl-a significantly correlated with the preceding month's mean daily UV dose and with UV-B/UV-A. In the far south, high MAA concentrations coincided with high phytoplankton biomass, high nutrients and a deep mixed layer associated with the austral spring. Here, the phytoplankton community was dominated by micro- and nano-eukaryotes. At the NER, the high MAA/chl-a coincided with low nutrient concentrations, a shallow mixed layer depth (20-70 m) and to a lesser extent to a shallow nitracline (40-90 m). Here, the phytoplankton consisted primarily of picophytoplankton (0-0.2 μm), dominated by the pico-cyanobacteria Synechococcus sp. and Prochlorococcus sp. and by the nitrogen fixing filamentous cyanobacterium Trichodesmium. The low nitrate concentrations (<0.1 μmol L(-1)) at the NER suggest that nitrogen fixation was required for MAA production. Specific MAAs could not easily be assigned to particular groups of phytoplankton and we could not rule out the possibility that MAAs were associated with symbiotic cyanobacteria contained within heterotrophic dinoflagellates or diatoms.  相似文献   

20.
To consider the relationship between chlorophyll a (Chl a) content and phytoplankton growth and nutrient status, four phytoplankton species were grown in nitrogen (N)-limited [and, for one species, phosphorus (P)-limited] culture and measurements were made of CNP biomass, in vivo and in vitro Chl a content, the ratio of variable to maximum fluorescence (FV/FM) and the performance index for photosynthesis, PIABS (a derivative of the O-J-I-P analysis of photosystem II functionality). Interspecies differences plus the development of intraspecies differences during nutrient stress produced c. 10-fold variations in Chl : C. Estimates of C from in vivo Chl content were better than those from extracted Chl content, as the decline in Chl : C during nutrient stress was offset in part by increased Chl fluorescence. FV/FM was not a robust indicator of nutrient status or relative growth rate. Responses of FV/FM in cells re-fed the limiting nutrient showed no consistent pattern with which to gauge nutrient status. PIABS showed some promise as an indicator of nutrient status and relative growth rate. Chl a content and fluorescence parameters do not deserve the unquestioned status they usually enjoy as indicators of biomass and physiological status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号