首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
piRNA是一类种类繁多的小RNA,通常在生殖类细胞中表达,其功能是抑制转座子的转座,维持基因组结构的稳定性。对线虫piRNA研究发现,piRNA还具有记忆基因表达的功能。体细胞和癌细胞中piRNA的发现,更凸显了piRNA功能的重要性和多样性。本文梳理了近几年来piRNA功能研究的最新成果,包括piRNA在调控转座子、mRNA、lncRNA、DNA甲基化修饰、染色体表观修饰等方面的功能,同时也探讨了piRNA和癌症的关系。  相似文献   

2.
田平芳 《遗传学报》2006,33(9):765-774
转座子是染色体上可移动的DNA序列,根据转座机制可将其分为:通过RNA中间体进行转座的逆转录座子(Retrotransposon)和通过DNA中间体进行转座的转座子(Transposon)。En/Spm家族转座子是后者中的一类,它的末端反向重复序列(Terminal inverted repeats,TIRs)具有保守的5个碱基CACTA,所以通常又称为CACTA转座子。除此之外,其靶位点一般为3bp的同向重复(Target site duplication,TSD);亚末端区域分布着若干正向或反向的重复序列(Subterminal repeat,STR)。迄今为止,CACTA转座子仅发现于植物基因组。过去一直认为由于其相对保守的转座机制而拷贝较少,但最近研究发现,该因子多拷贝存在于某些禾本科植物基因组中。由于该家族在基因组中分布的广泛性,具有用作分子指纹的应用前景。本文就其结构、转座机制和应用前景等做一综述。  相似文献   

3.
LTR-反转录转座子是真核基因组重要的组成部分,能通过RNA中间体完成在基因组上的转座。小麦种子受低能氮离子束注入后能促进其反转录转座子的转录,经不同剂量的氮离子束注入的种子发芽24h和48h后,其中的copia-反转录转座子的转录都有不同程度的提高,最高可达到对照的40倍。用基于反转录转座子扩增多态性和反转录转座子微卫星扩增多态性2种分子标记技术扩增经低能氮离子注入后的小麦DNA,指纹图谱显示出了一定的多态性,这说明低能氮离子束激活了小麦中反转录转座子的转座活性。转座子转录活性的增强可调节其邻近基因的表达和mRNA的拼接,反转录转座子插入到基因组上新的位点后,使基因组上的基因发生了重排,这种重排可能表现为植物表型的改变。因此,推测反转录转座子的转录活性提高和转座激活是产生低能离子束注入生物效应的重要原因之一。  相似文献   

4.
人类基因组中的反转录转座子   总被引:1,自引:0,他引:1  
人类基因组中有35%以上的序列为转座子序列.反转录转座子是引起人类疾病的潜在病因.人类基因组中的主导转座子——L1反转录转座子内部有二个开放读框,其编码蛋白具有RNA结合蛋白、反转录酶和内切酶活性.L1可能通过靶引物反转录机制整合到染色体中;Alu等非自主性反转录转座子可能利用L1反转录酶的反式互补作用进行转座.  相似文献   

5.
Mutator转座子及MULE在植物基因与基因组进化中的作用   总被引:2,自引:0,他引:2  
Mutator(Mu)转座子是植物中已发现的转座最活跃的转座子,其高的转座频率及趋向于单拷贝功能基因转座的特性,使该转座子成为玉米功能基因克隆的主要方法.Mu转座子的同源类似因子广泛存在于被子植物基因组中,而且同一基因组中往往具有多种变异类型.它不仅具有其他DNA转座子在基因和基因组进化中的普遍作用,而且具有能够承载基因组内功能基因和基因片段的载体功能,这种载体Mu转座子(Pack-MuLEs)能够在基因组内移动众多的基因片段,从而对基因和基因组进化产生作用.Mu转座子的同源序列发生在水稻与狗尾草之间的水平转移提供了高等植物核基因水平转移的首个例证.对Mu转座子的了解促进了我们对动态基因组概念的认识.文章对Mutator转座子的发现、转座特征、基因标签应用等的研究进展进行了综述,对Mu转座子家族的同源序列进行了分类,讨论了该转座子在基因组进化中的作用,分析了应加强研究的问题.  相似文献   

6.
刘茜  王瑾晖  李晓宇  岑山 《遗传》2016,38(2):93-102
LINE-1是现今人体内存在的唯一具有自主转座活性的转座子,约有500 000个拷贝,占人类基因组总量的17%。LINE-1是通过转录和逆转录在内的转座过程产生新的DNA拷贝,并使新产生的DNA拷贝插入基因组的不同位置。LINE-1转座会影响基因组中其他基因的表达或调控,因而会对基因组的稳定性产生影响,从而导致基因疾病或肿瘤的发生。本文总结了近年来国际上对LINE-1转座与肿瘤的发生和发展之间关系的研究进展,为肿瘤的治疗和机制研究提供一些线索。  相似文献   

7.
在水稻第四号染色体的长臂上鉴定了一个结构完整的Ty3型逆转录转座子RIRE10。RIRE10两LTR间的中间区域在gag pol的上游还包含另一个开放阅读框。通过RT PCR与Northern印迹杂交检测到来自LTR区的转录产物 ;根据点杂交结果 ,鉴定出包含中间区域的RIRE10成员的个数以及LTR区的拷贝数。除了 6 5个完整的逆转录转座子所具备的两个LTR外 ,水稻基因组还含有近 90 0个RIRE10的solo LTR。LTR区的转录以及导致solo LTR产生的同源重组可能影响了RIRE10成员在水稻基因组中的转座活性  相似文献   

8.
类Tc1转座子研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
转座子广泛存在于各种生物基因组中,能在染色体不同位点间转座,并在基因组中大量扩增.转座子的活动能引起生物基因组或基因的重组和变异,加速生物多样性及其进化速率,被视为生物基因组进化的内在驱动.转座子分2类:反转座子和DNA转座子.类Tc1转座子是DNA转座子超级家族中种类最多、分布最广的一类.本文简要概述了类Tc1转座子的结构特征,及其扩增、转座和迸发的机制,并展望了其应用和研究方向.  相似文献   

9.
真核生物在漫长的进化繁衍过程中,一直处在抵御转座元件对基因组侵害的"斗争"中。在过去的十多年中,越来越多的证据指明,小分子RNA扮演了这样一个抵御转座子侵袭的角色。尽管这种抵御侵害的策略对于不同物种各具特点,但它们都呈现出惊人相似的共同特征。基本上,所有的机制都包含三个组成部分:首先,转座元件促使产生小分子RNA,在某些物种中主要是Piwi-interacting RNAs,而在其他物种中主要是small interfering RNAs;第二,作用于活跃转座子的小分子RNA通过RNA依赖性RNA聚合酶或切割机制进行扩增;第三,这些小分子RNA与含有Argonaute蛋白或Piwi蛋白的效应复合物相结合,从而作用于目标转座子的转录本,实现转录后沉默,或作用于目标转座子DNA,抑制染色质修饰和DNA甲基化。这些属性特征构成了一个限制由转座元件活动所造成的严重后果的系统,从而防止转座子侵袭所带来的突变积累,基因表达谱的改变,以及生殖腺发育不良和不育。  相似文献   

10.
piRNA的生物学功能   总被引:3,自引:0,他引:3  
非编码小RNA(non-coding RNA, ncRNA)主要有siRNA(small interfering RNA)、miRNA(microRNA)和piRNA (piwi-interacting RNA)三类,其中piRNA是近年来新发现的一类小RNA分子,特异性地同Argonuat蛋白家族中的Piwi亚家族蛋白结合,主要在生殖细胞系中表达,对维持生殖系DNA完整、抑制转座子转录、抑制翻译、参与异染色质的形成、执行表观遗传调控和生殖细胞发生等均有重要作用.piRNA基因几乎遍布于整个基因组,但呈高度不连续性分布,大部分定位于20~90 kb的染色体基因簇上.与来自于双链RNA的siRNA和发卡结构miRNA不同之处是piRNA来自长单链RNA前体,或者是两股非重叠的反向转录前体,其生成与Dicer无关.作为调节RNA(riboregulator),piRNA和miRNA可能在动物起源早期就已经出现了,帮助生命进入了一个多细胞动物的时代,产生了今天的生物体复杂性和多样性.piRNA成为ncRNA的研究热点,进展飞快,有很多综述及时介绍piRNA的研究进展,本文结合siRNA、miRNA的特点介绍了关于piRNA的形成机制和作用的最新研究成果.  相似文献   

11.
Siomi MC  Saito K  Siomi H 《FEBS letters》2008,582(17):2473-2478
Transposable elements (TEs) are DNA elements found in the genomes of various organisms. TEs have been highly conserved during evolution, suggesting that they confer advantageous effects to their hosts. However, due to their ability to transpose into virtually any locus, TEs have the ability to generate deleterious mutations in the host genome. In response, a variety of different mechanisms have evolved to mitigate their activities. A main defense mechanism is RNA silencing, which is a gene silencing mechanism triggered by small RNAs. In this review, we address RNA silencing mechanisms that silence retrotransposons, a subset of TEs, and discuss how germline and somatic cells are equipped with different retrotransposon silencing mechanisms.  相似文献   

12.
Transposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements. The maize genome contains numerous families of class I TEs (retrotransposons) that are present in moderate to high copy numbers, and many are found in regions near genes, which provides an opportunity to test whether the spreading of heterochromatin from retrotransposons is prevalent. We have investigated the extent of heterochromatin spreading into DNA flanking each family of retrotransposons by profiling DNA methylation and di-methylation of lysine 9 of histone 3 (H3K9me2) in low-copy regions of the maize genome. The effects of different retrotransposon families on local chromatin are highly variable. Some retrotransposon families exhibit enrichment of heterochromatic marks within 800–1,200 base pairs of insertion sites, while other families exhibit very little evidence for the spreading of heterochromatic marks. The analysis of chromatin state in genotypes that lack specific insertions suggests that the heterochromatin in low-copy DNA flanking retrotransposons often results from the spreading of silencing marks rather than insertion-site preferences. Genes located near TEs that exhibit spreading of heterochromatin tend to be expressed at lower levels than other genes. Our findings suggest that a subset of retrotransposon families may act as controlling elements influencing neighboring sequences, while the majority of retrotransposons have little effect on flanking sequences.  相似文献   

13.
Transposable elements (TEs) constitute >80% of the wheat genome but their dynamics and contribution to size variation and evolution of wheat genomes (Triticum and Aegilops species) remain unexplored. In this study, 10 genomic regions have been sequenced from wheat chromosome 3B and used to constitute, along with all publicly available genomic sequences of wheat, 1.98 Mb of sequence (from 13 BAC clones) of the wheat B genome and 3.63 Mb of sequence (from 19 BAC clones) of the wheat A genome. Analysis of TE sequence proportions (as percentages), ratios of complete to truncated copies, and estimation of insertion dates of class I retrotransposons showed that specific types of TEs have undergone waves of differential proliferation in the B and A genomes of wheat. While both genomes show similar rates and relatively ancient proliferation periods for the Athila retrotransposons, the Copia retrotransposons proliferated more recently in the A genome whereas Gypsy retrotransposon proliferation is more recent in the B genome. It was possible to estimate for the first time the proliferation periods of the abundant CACTA class II DNA transposons, relative to that of the three main retrotransposon superfamilies. Proliferation of these TEs started prior to and overlapped with that of the Athila retrotransposons in both genomes. However, they also proliferated during the same periods as Gypsy and Copia retrotransposons in the A genome, but not in the B genome. As estimated from their insertion dates and confirmed by PCR-based tracing analysis, the majority of differential proliferation of TEs in B and A genomes of wheat (87 and 83%, respectively), leading to rapid sequence divergence, occurred prior to the allotetraploidization event that brought them together in Triticum turgidum and Triticum aestivum, <0.5 million years ago. More importantly, the allotetraploidization event appears to have neither enhanced nor repressed retrotranspositions. We discuss the apparent proliferation of TEs as resulting from their insertion, removal, and/or combinations of both evolutionary forces.  相似文献   

14.
转座子是真核生物基因组的重要组成成分。为了研究家蚕Bombyx mori长末端重复序列 (long terminal repeat, LTR)逆转录转座子的分类及进化, 本研究采用de novo预测和同源性搜索相结合的方法, 在家蚕基因组中共鉴定出了38个LTR逆转录转座子家族, 序列长度占整个基因组的0.64%, 远小于先前预测的11.8%, 其中有6个家族为本研究的新发现。38个家族中, 26个家族有表达序列标签 (expression sequence tag, EST)证据, 表明这些家族具有潜在的活性。对有EST证据的6个家族和没有EST证据的5个家族用RT-PCR进行了组织表达谱实验, 结果表明这11个家族在一些组织中有表达, 这进一步证实了这些家族具有转录活性, 基于此我们推测家蚕中大部分的LTR逆转录转座子家族很可能具有潜在活性。对转座子的插入时间进行估计, 结果表明绝大部分元件都是最近1百万年内插入到家蚕基因组中的。我们还比较了黑腹果蝇Drosophila melanogaster、 冈比亚按蚊Anopheles gambiae和家蚕B. mori中Ty3/Gypsy超家族分支的差异, 结果表明不同枝在不同昆虫中有着不同的扩张。家蚕中LTR逆转录转座子的鉴定和系统分析有助于我们理解逆转录转座子在昆虫进化中的作用。  相似文献   

15.
Eukaryotic genomes contain transposable elements (TE) that can move into new locations upon activation. Since uncontrolled transposition of TEs, including the retrotransposons and DNA transposons, can lead to DNA breaks and genomic instability, multiple mechanisms, including heterochromatin‐mediated repression, have evolved to repress TE activation. Studies in model organisms have shown that TEs become activated upon aging as a result of age‐associated deregulation of heterochromatin. Considering that different organisms or cell types may undergo distinct heterochromatin changes upon aging, it is important to identify pathways that lead to TE activation in specific tissues and cell types. Through deep sequencing of isolated RNAs, we report an increased expression of many retrotransposons in the old Drosophila fat body, an organ equivalent to the mammalian liver and adipose tissue. This de‐repression correlates with an increased number of DNA damage foci and decreased level of Drosophila lamin‐B in the old fat body cells. Depletion of the Drosophila lamin‐B in the young or larval fat body results in a reduction of heterochromatin and a corresponding increase in retrotransposon expression and DNA damage. Further manipulations of lamin‐B and retrotransposon expression suggest a role of the nuclear lamina in maintaining the genome integrity of the Drosophila fat body by repressing retrotransposons.  相似文献   

16.
17.
18.
Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells.  相似文献   

19.
蒋爽  滕元文  宗宇  蔡丹英 《西北植物学报》2013,33(11):2354-2360
反转录转座子是真核生物基因组中普遍存在的一类可移动的遗传因子,它们以RNA为媒介,在基因组中不断自我复制。在高等植物中,反转录转座子是基因组的重要成分之一。反转录转座子可以分为5大类型,其中以长末端重复(LTR)类型报道较多。LTR类型由于其首尾具有长末端重复序列,内部含有PBS、PPT、GAG和POL开放阅读框、TSD等结构,可以采用生物信息学软件进行预测。LTR反转录转座子的活性受到自身甲基化和环境因素的影响,DNA甲基化抑制反转录转座子转座,而外界环境的刺激能够激活转座子,从而影响插入位点周边基因的表达。同时由于LTR反转录转座子在植物中普遍存在,丰富的拷贝数以及多态性为新型分子标记(RBIP、SSAP、IRAP、REMAP)的开发提供了良好的素材。该文对近年来国内外有关植物反转录转座子的类型、结构特征、 LTR反转录转座子的活性及其影响因素、 LTR反转录转座子的预测以及标记开发等方面的研究进展进行综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号