首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the thermal acclimation of photosynthesis and respiration in black spruce seedlings [ Picea mariana (Mill.) B.S.P.] grown at 22/14 °C [low temperature (LT)] or 30/22 °C [high temperature (HT)] day/night temperatures. Net CO2 assimilation rates ( A net) were greater in LT than in HT seedlings below 30 °C, but were greater in HT seedlings above 30 °C. Dark and day respiration rates were similar between treatments at the respective growth temperatures. When respiration was factored out of the photosynthesis response to temperature, the resulting gross CO2 assimilation rates ( A gross) was lower in HT than in LT seedlings below 30 °C, but was similar above 30 °C. The reduced A gross of HT seedlings was associated with lower needle nitrogen content, lower ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) maximum carboxylation rates ( V cmax) and lower maximum electron transport rates ( J max). Growth treatment did not affect V cmax :  J max. Modelling of the CO2 response of photosynthesis indicated that LT seedlings at 40 °C might have been limited by heat lability of Rubisco activase, but that in HT seedlings, Rubisco capacity was limiting. In sum, thermal acclimation of A net was largely caused by reduced respiration and lower nitrogen investments in needles from HT seedlings. At 40 °C, photosynthesis in LT seedlings might be limited by Rubisco activase capacity, while in HT seedlings, acclimation removed this limitation.  相似文献   

2.
Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high‐latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down‐regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change.  相似文献   

3.
Chickpeas were grown with or without nitrate nitrogen feeding, or nodulated with Rhizobium leguminosarum. High [40°C day, 25°C night (HT)] and moderate [25°C day, 177°C night (LT)] temperature regimes were employed during growth. Growth rates, photosynthetic capacity and enzymes of carbon and nitrogen metabolism were monitored to assess the acclimatory capacity of the chickpea. Initial growth rates were stimulated by high temperatures, particularly in nitrate-fed and nodulated plants. Older HT plants had fewer laterals, smaller leaves, and fewer flowers were produced than in LT plants. There was some indication of an acclimation of photosynthesis to high temperatures and this was independent of nitrogen supply. Rubisco activity was increased by high growth temperatures. However, HT plants also had higher transpiration rates and lower water use efficiency than LT plants both in respective growth conditions and when compared in a common condition. High temperatures reduced shoot nitrate reductase activity but had little effect on root activity, which was the same if not greater than activity in LT roots. The amino acid, asparagine, was found at high concentrations in all treatments. Concentrations were maintained throughout growth in HT plants but declined with age in LT plants.  相似文献   

4.
To predict the long‐term effects of climate change – global warming and changes in precipitation – on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed‐effects approach. Our results showed that the variables long‐term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041–2070) diameter growth rate may differ from current (1971–2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate–growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.  相似文献   

5.
Rates of net photosynthesis and dark respiration were measured for detached needles ofPinus pumila trees growing on the Kiso mountain range in central Japan in 1987. Dependency of photosynthesis on light and temperature was examined in relation to needle age and season. The light saturation point of net photosynthesis was lower in 3- and 4-yr-old needles than that in current (flushed in 1987), 1- and 2-yr-old needles.P nmax, net photosynthetic rates at 1000 μmol m−2 s−1 and 15°C, of needles from 1- to 4-yr-old generally decreased with needle age.P nmax of 1- to 4-yr-old needles became higher in August than in other months, andP nmax of current needles did so in September. Current needles showed high respiration rates (at 15°C) only in August. Optimum air temperatures for net photosynthesis at 1000 μmol m−2 s−1 were between 10 and 15°C for current and 1-yr-old needles. The temperature coefficient of dark respiration rates was 2.3–3.3 for current needles from August to October, and 2.2 for 1-yr-old needles in mid-July.  相似文献   

6.
Rising atmospheric carbon dioxide (CO2) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA) increased and maximum photosynthetic rates declined in warm‐grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax, and of electron transport, Jmax) was reduced in warm‐grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ, respectively) and the thermal optimum for Jmax. In both species, the ToptA was positively correlated with both EaV and EaJ, but negatively correlated with the ratio of Jmax/Vcmax. Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ) show no response to elevated CO2.  相似文献   

7.
In the next century, the boreal ecosystems are projected to experience greater rates of warming than most other regions of the world. As the boreal forest constitutes a reservoir of trees of huge ecological importance and only partially known economic potential, any possible climate‐related change in plant growth and dynamics has to be promptly predicted and evaluated. A model for assessing xylem phenology in black spruce [Picea mariana (Mill.) B.S.P.] using daily temperatures and thermal thresholds was defined and applied to predict changes in onset, ending and duration of xylem growth under different warming scenarios with temperatures rising by up to 3 °C. This was achieved by collecting and analyzing a dataset obtained from a 7‐year monitoring of cambium phenology and wood formation on a weekly time‐scale in trees growing in four sites at different latitudes and altitudes in the Saguenay‐Lac‐Saint‐Jean region (Quebec, Canada). The onset of xylem growth occurred between mid‐May and early June while the end ranged between mid‐September and early October, resulting in a growing season of 101–141 days. The model predicted longer duration of xylem growth at higher temperatures, with an increase of 8–11 days/ °C, because of an earlier onset and later ending of growth. With an increase of 3 °C in the mean temperature during the year, the duration of xylem growth changed on average from 125 to 160 days. The predicted changes in cambial phenology could significantly affect future wood production of the boreal ecosystems.  相似文献   

8.
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree‐ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree‐ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.  相似文献   

9.
Fire severity is predicted to increase in boreal regions due to global warming. We hypothesized that these extreme events will alter regeneration patterns of black spruce (Picea mariana). To test this hypothesis, we monitored seed dispersal and seedling emergence, survival and growth for 6 years from 2005 to 2010 after the 2004 wildfire on Poker Flat, interior Alaska, using 96 1 × 1 m plots. A total of 1,300 seedlings of black spruce and three broad-leaved deciduous trees (Populus tremuloides, Betula papyrifera, and Salix spp.) were recorded. Black spruce seedlings colonized burned and unburned ground surfaces for the first 2 years after the wildfire and established on any topographical surface, while the broad-leaved trees emerged less in areas of lower elevation, slope gradient and canopy openness and only on burned surfaces. Vascular plant cover on the ground floor increased the seedling establishment of black spruce and broad-leaved trees, most likely because of seed-trap effects. Black spruce grew faster on burned surface than on unburned surfaces. However, broad-leaved trees grew faster than black spruce on burned surfaces. Black spruce regenerates even after severe wildfire when the microtopography restricts the colonization of broad-leaved trees. The regeneration trajectories are determined soon after wildfire by a combination of seed limitation for black spruce and habitat preference for broad-leaved trees.  相似文献   

10.
Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in Trondheim, Norway, using relative electrolyte leakage (REL) as an index of cell injury. Relatively LT sensitive species came from temperate coastal and Mediterranean environments and displayed a well-defined sigmoidal response to LT stress, with LT50 ranging from −27 to −38°C. Species originating from boreal regions were not lethally stressed by slow freezing to temperatures as low as −80°C, while species from temperate mountains and continental interiors displayed intermediate responses, with LT50s ranging from −33 to −44°C. Further evaluation of one sensitive and one insensitive species in each genus showed that boreal species can survive quenching in liquid nitrogen at −196°C provided they are first slowly cooled to −30°C or lower. Quantitative image analysis of color changes resulting from LT stress followed by exposure to light showed that foliage from nonlethally stressed boreal species developed mild to moderate chlorosis while more sensitive species developed a mixture of chlorosis and necrosis, with significant necrosis occurring mainly at temperatures resulting in REL of 50% or more. Sensitive and insensitive trees differed significantly in total raffinose, sucrose, and total sugar concentrations, and raffinose and sucrose correlated significantly with LT50 within the sensitive group. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Rising temperatures caused by climate change could negatively alter plant ecosystems if temperatures exceed optimal temperatures for carbon gain. Such changes may threaten temperature‐sensitive species, causing local extinctions and range migrations. This study examined the optimal temperature of net photosynthesis (Topt) of two boreal and four temperate deciduous tree species grown in the field in northern Minnesota, United States under two contrasting temperature regimes. We hypothesized that Topt would be higher in temperate than co‐occurring boreal species, with temperate species exhibiting greater plasticity in Topt, resulting in better acclimation to elevated temperatures. The chamberless experiment, located at two sites in both open and understory conditions, continuously warmed plants and soils during three growing seasons. Results show a modest, but significant shift in Topt of 1.1 ± 0.21 °C on average for plants subjected to a mean 2.9 ± 0.01 °C warming during midday hours in summer, and shifts with warming were unrelated to species native ranges. The 1.1 °C shift in Topt with 2.9 °C warming might be interpreted as suggesting limited capacity to shift temperature response functions to better match changes in temperature. However, Topt of warmed plants was as well‐matched with prior midday temperatures as Topt of plants in the ambient treatment, and Topt in both treatments was at a level where realized photosynthesis was within 90–95% of maximum. These results suggest that seedlings of all species were close to optimizing photosynthetic temperature responses, and equally so in both temperature treatments. Our study suggests that temperate and boreal species have considerable capacity to match their photosynthetic temperature response functions to prevailing growing season temperatures that occur today and to those that will likely occur in the coming decades under climate change.  相似文献   

12.
 Respiration of 1-year-old needles of 30-year-old Norway spruce trees [Picea abies (L.) Karst.] was studied in a nutrient optimisation experiment in northern Sweden. Respiration rates of detached needles, from ten control (C) and ten irrigated-fertilised (IL) trees, were measured on 16 occasions from June 1992 to June 1993. The aim of the study was to determine the influence of temperature on the seasonal course of needle maintenance respiration, and the effect of nitrogen concentration [N] and carbohydrate content on needle respiration in young Norway spruce trees subjected to long-term fertilisation. The IL treatment significantly affected needle size, in terms of dry mass and length, but not specific needle length (SNL). There was, however, a strong tree-specific effect on SNL (P<10–9, R 2 = 0.75). Needle starch content varied markedly with season (0–25% of total dry mass). This, unless accounted for, would cause erroneous estimates of nutrient concentrations, and of rates of needle respiration, within and between treatments. There was considerable seasonal variation in needle respiration, both in terms of maintenance respiration and temperature dependence (Q10). Q10 had its highest value (2.8) during winter and its lowest (2.0) in the middle of summer. In early autumn (August, September), respiration rate and needle [N] were significantly related (C: P = 0.001, IL: P<0.0005). There was no significant difference in the slope between the two regression lines, but a difference in intercept. At the same needle [N], needles from IL-plots always had a lower respiration rate than needles from control plots. No obvious explanation for the observed difference in intercept was found, but some plausible assumptions are put forward and discussed. Received: 24 January 1997 / Accepted: 1 July 1997  相似文献   

13.
Prosopis chilensis is a plant highly tolerant to heat shock   总被引:1,自引:0,他引:1  
At temperatures between 25 and 35°C, 100% of Prosopis chilensis seeds germinated within 24 h. At higher temperatures, the germination rate was reduced; at 50°C, seeds did not germinate. After germination at 25°C, the optimal temperature for seedling growth was 35°C and the seedlings did not grow at a temperature of 50°C. However, when germination was at 35°C, the optimal temperature for seedling growth was 40°C and some seedlings grew at 50°C, suggesting that thermotolerance was induced during seed germination at 35°C. Further thermotolerance can be induced in seedlings germinated at 35°C, by exposing them to 40°C for 2h. Under these conditions, seedlings exhibited increased growth rate at 45 and 50°C. Fluorography of SDS-polyacrylamide gel electrophoresis of the proteins synthesized and accumulated during 2 h at temperatures of 35, 40, 45 and 50°C in the presence of [35S]methionine revealed the expression of 11 proteins not detectable at 35°C. Most of the proteins present at 35°C also increased in expression. The temperature for maximal expression of these proteins was 45°C.  相似文献   

14.
The Climate Change Experiment (CLIMEX) is a unique large scale facility in which an entire undisturbed catchment of boreal vegetation has been exposed to elevated CO2 (560 ppm) and temperature (+3°C summer, +5°C winter) for the past three years with all the soil-plant-atmosphere linkages intact. Here, carbon isotope composition and stomatal density have been analysed from sequential year classes of needles of mature Scots pine trees (Pinus sylvestris L.) to investigate the response of time-integrated water-use efficiency (UWE) and stomatal density to CO2 enrichment and climate change. Carbon isotope discrimination decreased and WUE increased in cohorts of needles developing under increased CO2 and temperature, compared to needles on the same trees developing in pretreatment years. Mid-season instantaneous gas exchange, measured on the same trees for the past four years, indicated that these responses resulted from higher needle photosynthetic rates and reduced stomatal conductance. Needles of P. sylvestris developing under increased CO2 and temperature had consistently lower stomatal densities than their ambient grown counterparts on the same trees. The stomatal density of P. sylvestris needles was inversely correlated with δ13C-derived WUE, implying some effect of this morphological response on leaf gas exchange. Future atmospheric CO2 and temperature increases are therefore likely to improve the water economy of P. sylvestris, at least at the scale of individual needles, by affecting stomatal density and gas exchange processes.  相似文献   

15.
Long-term effects of elevated winter temperatures on cold hardiness were investigated for Norway spruce (Picea abies L. Karst.), lodgepole pine (Pinus contorta Dougl.) and Scots pine (Pinus sylvestris L.). Two-year-old seedlings with the same pre-history of growth and cold hardening in the field were maintained from early December to late March at two field sites in northern Sweden and in a cold room. The temperatures at these locations averaged –13·5, –8·9 and 5·5°C, respectively. Following treatments, carbohydrate contents and cold tolerances were assessed. Needle respiration was also analysed during the 5·5°C treatment. Cold tolerance of lodgepole pine and Scots pine was much reduced following the 5·5°C treatment. Cold tolerance was somewhat reduced in lodgepole pine following the –8·9 °C treatment, but was essentially maintained in spruce throughout all treatments. The cold tolerance of needles was strongly correlated with their soluble sugar contents. Spruce maintained cold hardiness by having larger reserves of sugars and lower rates of respiration which decreased more rapidly as sugars were depleted. Tolerance of lodgepole pine to frost desiccation was also much reduced following the 5·5°C treatment.  相似文献   

16.
For trees, the ability to obtain and maintain sufficient levels of frost hardiness in late autumn, winter and spring is crucial. We report that temperatures during dormancy induction influence bud set, frost hardiness, tolerance to cold storage, timing of bud burst and spring frost hardiness in seedlings of Norway spruce (Picea abies (L.) Karst.). Bud set occurred later in 12°C than in 21°C, and later in cool nights (7°C) than in constant temperature. One weekly frost night (−2.5°C) improved frost hardiness. Cool nights reduced frost hardiness early, but improved hardiness later during cold acclimation. Buds and stems were slightly hardier in 21°C than in 12°C, while needles were clearly hardier in 12°C. Cold daytime temperature, cool nights and one weekly frost night improved cold storability (0.7°C). Seedlings receiving high daytime temperatures burst buds later, and were less injured by light frost some days after bud burst.  相似文献   

17.
This study examined temperature acclimation, growth, and photosynthetic characteristics of the zygote-derived seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae). The seedlings were cultured at 15°C or 25°C for 4 weeks. The average relative growth rate was significantly higher in seedlings acclimated at 25°C. The photosynthetic rate measured at 15°C was much higher in seedlings grown at 15°C than those grown at 25°C, indicating photosynthetic acclimation to a lower temperature. At 35°C, the photosynthetic rate of 15°C-grown seedlings was drastically decreased, whereas that of 25°C-grown seedlings was significantly increased. The maximum relative electron transport rate (rETRmax) measured at the respective growth temperature was significantly higher in seedlings grown at 25°C than at 15°C. At a measuring temperature of 35°C, the rETRmax in both 15°C- and 25°C-grown seedlings were considerably reduced with regard to those measured at 15°C or 25°C. Our results suggested that, compared with the seedlings grown at 25°C, those acclimated at a lower temperature could be disadvantaged under adverse conditions such as increased temperatures.  相似文献   

18.
The boreal forest is the largest terrestrial biome in North America and holds a large portion of the world’s reactive soil carbon. Therefore, understanding soil carbon accumulation on a landscape or regional scale across the boreal forest is useful for predicting future soil carbon storage. Here, we examined the relationship between floristic composition and ecosystem parameters, such as soil carbon pools, the carbon-to-nitrogen (C/N) ratio of live black spruce needles, and normalized basal area increment (NBAI) of trees in black spruce communities, the most widespread forest type in the boreal forest of Alaska. Variability in ecosystem properties among black spruce stands was as large as that which had previously been documented among all forest types in the central interior of Alaska; we found an eightfold range in NBAI and fivefold range in mineral soil carbon and nitrogen pools. Acidic black spruce communities had significantly more carbon in the organic soil horizon than did nonacidic black spruce communities, but did not differ in any other measured ecosystem parameter. We explained 48% of the variation in total soil carbon with a combination of plant community indices and abiotic and biotic factors. Plant community composition was at least as effective as any single environmental factor or stand characteristic in predicting soil C pools in Alaskan black spruce ecosystems. We conclude that among the community properties analyzed, the presence of key groups of species, overall species composition, and diversity of certain functional types, especially Sphagnum moss species, are important predictors of soil carbon sequestration in the black spruce forest type.  相似文献   

19.
Physiological processes of terrestrial plants regulate the land–atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO2 concentration ([CO2]) in a 3‐year field experiment with mature boreal Norway spruce. We found that elevated [CO2] decreased photosynthetic carboxylation capacity (?23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO2] but significantly decreased (?27%) by warming, and the ratio of intercellular to ambient [CO2] was enhanced (+17%) by elevated [CO2] and decreased (?12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long‐term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO2], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation–atmosphere interactions.  相似文献   

20.
 Effects of fluctuating and constant temperatures on budburst time, and respiration in winter buds were studied in Betula pubescens Ehrh. Dormant seedlings were chilled at 0°C for 4 months and then allowed to sprout in long days (LD, 24 h) at constant temperatures of 6, 9, 12, 15, 18 and 21°C, and at diurnally fluctuating temperatures (12/12 h, LD 24 h) with means of 9, 12, 15 and 18°C. No difference in thermal time requirements for budburst was found between plants receiving constant and fluctuating temperatures. The base temperature for thermal time accumulation was estimated to 1°C. Respiration in post-dormant (dormancy fully released) excised winter buds from an adult tree increased exponentially with temperature and was 20 times as high at 30°C than at 0°C. However, respiration in buds without scales was 30% higher at 0°C, and it was 2.7 times higher at 24°C than in intact buds. Thus, the tight bud scales probably constrain respiration and growth and are likely to delay budburst in spring. Arrhenius plots of the respiration data were biphasic with breaks at 13–15°C. However, this phase transition is unlikely to be associated with chilling sensitivity since the present species is hardy and adapted to a boreal climate. Received: 10 January 1997 / Accepted: 23 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号