首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytokine-inducible SH2 domain-containing protein CIS inhibits signaling from the growth hormone (GH) receptor (GHR) to STAT5b by a proteasome-dependent mechanism. Here, we used the GH-responsive rat liver cell line CWSV-1 to investigate the role of CIS and the proteasome in GH-induced GHR internalization. Cell-surface GHR localization and internalization were monitored in GH-stimulated cells by confocal immunofluorescence microscopy using an antibody directed against the GHR extracellular domain. In GH na?ve cells, GHR was detected in small, randomly distributed granules on the cell surface and in the cytoplasm, with accumulation in the perinuclear area. GH treatment induced a rapid (within 5 min) internalization of GH.GHR complexes, which coincided with the onset of GHR tyrosine phosphorylation and the appearance in the cytosol of distinct granular structures containing internalized GH. GHR signaling to STAT5b continued for approximately 30-40 min, however, indicating that GHR signaling and deactivation of the GH.GHR complex both proceed from an intracellular compartment. The internalization of GH and GHR was inhibited by CIS-R107K, a dominant-negative SH2 domain mutant of CIS, and by the proteasome inhibitors MG132 and epoxomicin, which prolong GHR signaling to STAT5b. GH pulse-chase studies established that the internalized GH.GHR complexes did not recycle back to the cell surface in significant amounts under these conditions. Given the established specificity of CIS-R107K for blocking the GHR signaling inhibitory actions of CIS, but not those of other SOCS/CIS family members, these findings implicate CIS and the proteasome in the control of GHR internalization following receptor activation and suggest that CIS-dependent receptor internalization is a prerequisite for efficient termination of GHR signaling.  相似文献   

2.
The ubiquitin conjugation system is involved in ligand-induced endocytosis of the growth hormone receptor (GHR) via a cytosolic 10-amino acid ubiquitin-dependent endocytosis motif. Herein, we demonstrate that the proteasome is also involved in growth hormone receptor down-regulation. Ligand-induced degradation was blocked in the presence of specific proteasomal inhibitors. In addition, growth hormone (GH) internalization was inhibited, whereas the transferrin receptor cycle remained unaffected. A truncated GHR entered the cells independent of proteasome action. In addition, we show that GH internalization is independent of the presence of lysine residues in the cytosolic domain of the receptor, whereas its internalization can still be inhibited by proteasomal inhibitors. Thus, GHR internalization requires proteasome action in addition to an active ubiquitin conjugation system, but ubiquitination of the GHR itself seems not to be required.  相似文献   

3.
The objective of this study was to determine if a functional heterodimer of prolactin receptor (PRLR) and growth hormone receptor (GHR) can be formed in humans. A novel ligand was designed that is composed of a GHR antagonist (B2036) and a PRLR antagonist (G129R) fused in tandem (B2036-G129R). Because both B2036 and G129R are binding site 2 inactive antagonists, the B2036-G129R fusion protein, in theory contains only two functional binding site 1s: one for GHR and one for PRLR. We examined the behavior of this chimeric ligand in cell lines known to express GHR, PRLR, or both receptors. The data presented show that B2036-G129R is inactive in IM-9 cells that express only GHR or Nb2 cells that express PRLR. In T-47D cells that coexpress PRLR and GHR, B2036-G129R activates JAK2/STAT5 signaling. These findings provide evidence that B2036-G129R is able to activate signal transduction through a heterodimer of PRLR and GHR in humans.  相似文献   

4.
5.
Growth hormone (GH) initiates its cellular action by properly dimerizing GH receptor (GHR). A substantial fraction of circulating GH is complexed with a high-affinity GH-binding protein (GHBP) that in many species can be generated by GHR proteolysis and shedding of the receptor's ligand-binding extracellular domain. We previously showed that this proteolysis 1) can be acutely promoted by the phorbol ester phorbol 12-myristate 13-acetate (PMA), 2) requires a metalloprotease activity, 3) generates both shed GHBP and a membrane-associated GHR transmembrane/cytoplasmic domain remnant, and 4) results in down-regulation of GHR abundance and GH signaling. Using cell culture model systems, we now explore the effects of GH treatment on inducible GHR proteolysis and GHBP shedding. In human IM-9 lymphocytes, which endogenously express GHRs, and in Chinese hamster ovary cells heterologously expressing wild-type or cytoplasmic domain internal deletion mutant rabbit GHRs, brief exposure to GH inhibited PMA-induced GHR proteolysis (receptor loss and remnant accumulation) by 60-93%. PMA-induced shedding of GHBP from Chinese hamster ovary transfectants was also inhibited by 70% in the presence of GH. The capacity of GH to inhibit inducible GHR cleavage did not rely on JAK2-dependent GH signaling, as evidenced by its continued protection in JAK2-deficient gamma2A rabbit GHR cells. The GH concentration dependence for inhibition of PMA-induced GHR proteolysis paralleled that for its promotion of receptor dimerization (as monitored by formation of GHR disulfide linkage). Unlike GH, the GH antagonist, G120K, which binds to but fails to properly dimerize GHRs, alone did not protect against PMA-induced GHR proteolysis; G120K did, however, antagonize the protective effect of GH. Our data suggest that GH inhibits PMA-induced GHR proteolysis and GHBP shedding by inducing GHR dimerization and that this effect does not appear to be related to GH site 1 binding, GHR internalization, or GHR signaling. The implications of these findings with regard to GH signaling and GHR down-regulation are discussed.  相似文献   

6.
In addition to its role in selective protein degradation, the conjugation of ubiquitin to proteins has also been implicated in the internalization of plasma membrane proteins, including the alpha-factor receptor Ste2p, uracil permease Fur4p, epithelial sodium channel ENaC and the growth hormone receptor (GHR). Binding of GH to its receptor induces receptor dimerization, resulting in the activation of signal transduction pathways and an increase of GHR ubiquitination. Previously, we have shown that the ubiquitin conjugation system mediates GH-induced GHR internalization. Here, we present evidence that a specific domain of the GHR regulates receptor endocytosis via the ubiquitin conjugation system. This ubiquitin-dependent endocytosis (UbE) motif consists of the amino acid sequence DSWVEFIELD and is homologous to sequences in other proteins, several of which are known to be ubiquitinated. In addition, we show that GH internalization by a truncated GHR is independent of the presence of lysine residues in the cytosolic domain of this receptor, while internalization still depends on an intact ubiquitin conjugation system. Thus, GHR internalization requires the recruitment of the ubiquitin conjugation system to the GHR UbE motif rather than the conjugation of ubiquitin to the GHR itself.  相似文献   

7.
Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation of the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed a markedly reduced capability of GH internalization. In contrast to cells transfected with GH-R1-638, none of the cell lines expressing truncated GH receptors exhibited any increase of the GH-stimulated insulin production. We conclude that domains within the COOH-terminal half of the cytoplasmic part of the GH receptor are required for transduction of the signal for GH-stimulated insulin synthesis, whereas cytoplasmic domains proximal to the transmembrane region are involved in receptor-mediated GH internalization.  相似文献   

8.
9.
10.
We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor''s extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH–GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize.  相似文献   

11.
Melanoma is the most aggressive skin cancer. Its aggressiveness is most commonly attributed to ERK pathway mutations leading to constitutive signaling. Though initial tumor regression results from targeting this pathway, resistance often emerges. Interestingly, interrogation of the NCI-60 database indicates high growth hormone receptor (GHR) expression in melanoma cell lines. To further characterize melanoma, we tested responsiveness to human growth hormone (GH). GH treatment resulted in GHR signaling and increased invasion and migration, which was inhibited by a GHR monoclonal antibody (mAb) antagonist in WM35, SK-MEL 5, SK-MEL 28 and SK-MEL 119 cell lines. We also detected GH in the conditioned medium (CM) of human melanoma cell lines. GHR, JAK2 and STAT5 were basally phosphorylated in these cell lines, consistent with autocrine/paracrine GH production. Together, our results suggest that melanomas are enriched in GHR and produce GH that acts in an autocrine/paracrine manner. We suggest that GHR may constitute a therapeutic target in melanoma.  相似文献   

12.
13.
Growth hormone (GH) regulates body growth and metabolism. GH exerts its biological action by stimulating JAK2, a GH receptor (GHR)-associated tyrosine kinase. Activated JAK2 phosphorylates itself and GHR, thus initiating multiple signaling pathways. In this work, we demonstrate that platelet-derived growth factor (PDGF) and lysophosphatidic acid (LPA) down-regulate GH signaling via a protein kinase C (PKC)-dependent pathway. PDGF substantially reduces tyrosyl phosphorylation of JAK2 induced by GH but not interferon-gamma or leukemia inhibitory factor. PDGF, but not epidermal growth factor, decreases tyrosyl phosphorylation of GHR (by approximately 90%) and the amount of both total cellular GHR (by approximately 80%) and GH binding (by approximately 70%). The inhibitory effect of PDGF on GH-induced tyrosyl phosphorylation of JAK2 and GHR is abolished by depletion of 4beta-phorbol 12-myristate 13-acetate (PMA)-sensitive PKCs with chronic PMA treatment and is severely inhibited by GF109203X, an inhibitor of PKCs. In contrast, extracellular signal-regulated kinases 1 and 2 and phosphatidylinositol 3-kinase appear not to be involved in this inhibitory effect of PDGF. LPA, a known activator of PKC, also inhibits GH-induced tyrosyl phosphorylation of JAK2 and GHR and reduces the number of GHR. We propose that ligands that activate PKC, including PDGF, LPA, and PMA, down-regulate GH signaling by decreasing the number of cell surface GHR through promoting GHR internalization and degradation and/or cleavage of membrane GHR and release of the extracellular domain of GHR.  相似文献   

14.
The major function of the ubiquitin-conjugating system is the targeting of cytosolic and nuclear proteins for degradation by the proteasome. Recently, ubiquitin conjugation has been implicated in the downregulation of signalling receptors such as the mammalian growth hormone receptor (GHR) and the alpha-factor receptor in yeast. By examining truncated receptors, the internalization-deficient receptor mutant F327A and conditions under which clathrin-mediated GHR endocytosis is inhibited, we show here that GHR ubiquitination and ligand-induced GHR internalization are coupled events. Previously, we had shown that GHR endocytosis is dependent on an intact ubiquitination system. Here we present evidence that GHR ubiquitination depends on an intact endocytic pathway. Our data indicate that the ubiquitin-conjugating system and the endocytic pathway interact at the cytoplasmic tail of the GHR at the plasma membrane, where they cooperate to regulate internalization of the GHR.  相似文献   

15.
The growth hormone receptor (GHR) intracellular domain contains all of the information required for signal transduction as well as for endocytosis. Previously, we showed that the proteasome mediates the clathrin-mediated endocytosis of the GHR. Here, we present evidence that the proteasomal inhibitor MG132 prolongs the GH-induced activity of both GHR and JAK2, presumably through stabilization of GHR and JAK2 tyrosine phosphorylation. If proteasomal inhibitor was combined with ligand in an endocytosis-deficient GHR mutant, the same phenomenon occurred indicating that proteasomal action on tyrosine dephosphorylation is independent of endocytosis. Experiments with a GHR-truncated tail mutant (GHR-(1-369)) led to a prolonged JAK2 phosphorylation caused by the loss of a phosphatase-binding site. This raised the question of what happens to the signal transduction of the GHR after its internalization. Co-immunoprecipitation of GH.GHR complexes before and after endocytosis showed that JAK2 as well as other activated proteins are bound to the GHR not only at the cell surface but also intracellularly, suggesting that the GHR signal transduction continues in endosomes. Additionally, these results provide evidence that GHR is present in endosomes both in its full-length and truncated form, indicating that the receptor is down-regulated by the proteasome.  相似文献   

16.
17.
Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.  相似文献   

18.
Sepsis results in hepatic "growth hormone (GH) resistance" with reductions in plasma IGF-I despite a two- to fourfold increase in circulating GH. In this study, we examine the effects of IL-1 on GH receptor (GHR) expression, GH signaling (via the JAK/STAT and MAPK pathways), and the induction of gene expression [IGF-I mRNA and serine protease inhibitor (Spi) 2.1] by GH in CWSV-1 hepatocytes. Incubation of cells with IL-1beta (10 ng/ml, 24 h) had no effect on the relative abundance of GHR or signaling proteins JAK2, STAT5b, and ERK1/2 in cell lysates. Baseline phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 was minimal. After GH stimulation, tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 increased 2- to 10-fold. However, neither the time course nor the magnitude of GHR, JAK2, and ERK1/2 phosphorylation by GH were significantly altered by IL-1. The GH-induced translocation of STAT5b to the nucleus was not prevented by IL-1. Although phosphorylated STAT5 in nuclear extracts from GH + IL-1 cells was decreased by 24% (vs. controls) 15 min after GH stimulation, this did not result in reduced STAT5-DNA binding activity. Pretreatment with IL-1 did not significantly decrease IGF-I mRNA stability. We conclude that IL-1 only minimally affects the time course of JAK2/STAT5 and MAPK signaling by GH. Therefore, an inhibitory effect of IL-1 on IGF-I and Spi 2.1 mRNA synthesis by GH represents the most likely mechanism for IL-1-mediated GH resistance.  相似文献   

19.
Insulin is important for maintaining the responsiveness of the liver to growth hormone (GH). Insulin deficiency results in a decrease in liver GH receptor (GHR) expression, which can be reversed by insulin administration. In osteoblasts, continuous insulin treatment decreases the fraction of cellular GHR localized to the plasma membrane. Thus, it is not clear whether hyperinsulinemia results in an enhancement or inhibition of GH action. We asked whether continuous insulin stimulation, similar to what occurs in hyperinsulinemic states, results in GH resistance. Our present studies suggest that insulin treatment of hepatoma cells results in a time-dependent inhibition of acute GH-induced phosphorylation of STAT5B. Whereas total protein levels of JAK2 were not reduced after insulin pretreatment for 16 h, GH-induced JAK2 phosphorylation was inhibited. There was a concomitant decrease in GH binding and a reduction in immunoreactive GHR levels following pretreatment with insulin for 8-24 h. In summary, continuous insulin treatment in rat H4 hepatoma cells reduces GH binding, immunoreactive GHR, GH-induced phosphorylation of JAK2, and GH-induced tyrosine phosphorylation of STAT5B. These findings suggest that hepatic GH resistance may develop when a patient exhibits chronic hyperinsulinemia, a condition often observed in patients with obesity and in the early stage of Type 2 diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号