首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The growth hormone (GH) receptor (GHR) binds GH in its extracellular domain and transduces activating signals via its cytoplasmic domain. Both GH-induced GHR dimerization and JAK2 tyrosine kinase activation are critical in initiation of GH signaling. We previously described a rapid GH-induced disulfide linkage of GHRs in human IM-9 cells. In this study, three GH-induced phenomena (GHR dimerization, GHR disulfide linkage, and enhanced GHR-JAK2 association) were examined biochemically and immunologically. By using the GH antagonist, G120K, and an antibody recognizing a dimerization-sensitive GHR epitope, we demonstrated that GH-induced GHR disulfide linkage reflects GH-induced GHR dimerization. GH, not G120K, promoted both GHR disulfide linkage and enhanced association with JAK2. Measures that diminished GH-dependent JAK2 and GHR tyrosine phosphorylation diminished neither GH-induced GHR disulfide linkage nor GH-enhanced GHR-JAK2 association. By using both transient and stable expression systems, we determined that cysteine 241 (an unpaired extracellular cysteine) was critical for GH-induced GHR disulfide linkage; however, GH-induced GHR dimerization, GHR-JAK2 interaction, and GHR, JAK2, and STAT5 tyrosine phosphorylation still proceeded when this cysteine residue was mutated. We conclude GH-induced GHR disulfide linkage is not required for GHR dimerization, and activation and GH-enhanced GHR-JAK2 association depends more on GHR dimerization than on GHR and/or JAK2 tyrosine phosphorylation.  相似文献   

3.
Growth hormone (GH) initiates its cellular action by properly dimerizing GH receptor (GHR). A substantial fraction of circulating GH is complexed with a high-affinity GH-binding protein (GHBP) that in many species can be generated by GHR proteolysis and shedding of the receptor's ligand-binding extracellular domain. We previously showed that this proteolysis 1) can be acutely promoted by the phorbol ester phorbol 12-myristate 13-acetate (PMA), 2) requires a metalloprotease activity, 3) generates both shed GHBP and a membrane-associated GHR transmembrane/cytoplasmic domain remnant, and 4) results in down-regulation of GHR abundance and GH signaling. Using cell culture model systems, we now explore the effects of GH treatment on inducible GHR proteolysis and GHBP shedding. In human IM-9 lymphocytes, which endogenously express GHRs, and in Chinese hamster ovary cells heterologously expressing wild-type or cytoplasmic domain internal deletion mutant rabbit GHRs, brief exposure to GH inhibited PMA-induced GHR proteolysis (receptor loss and remnant accumulation) by 60-93%. PMA-induced shedding of GHBP from Chinese hamster ovary transfectants was also inhibited by 70% in the presence of GH. The capacity of GH to inhibit inducible GHR cleavage did not rely on JAK2-dependent GH signaling, as evidenced by its continued protection in JAK2-deficient gamma2A rabbit GHR cells. The GH concentration dependence for inhibition of PMA-induced GHR proteolysis paralleled that for its promotion of receptor dimerization (as monitored by formation of GHR disulfide linkage). Unlike GH, the GH antagonist, G120K, which binds to but fails to properly dimerize GHRs, alone did not protect against PMA-induced GHR proteolysis; G120K did, however, antagonize the protective effect of GH. Our data suggest that GH inhibits PMA-induced GHR proteolysis and GHBP shedding by inducing GHR dimerization and that this effect does not appear to be related to GH site 1 binding, GHR internalization, or GHR signaling. The implications of these findings with regard to GH signaling and GHR down-regulation are discussed.  相似文献   

4.
The growth and metabolic actions of growth hormone (GH) are believed to be mediated through the GH receptor (GHR) by JAK2 activation. The GHR exists as a constitutive homodimer, with signal transduction by ligand-induced realignment of receptor subunits. Based on the crystal structures, we identify a conformational change in the F'G' loop of the lower cytokine module, which results from binding of hGH but not G120R hGH antagonist. Mutations disabling this conformational change cause impairment of ERK but not JAK2 and STAT5 activation by the GHR in FDC-P1 cells. This results from the use of two associated tyrosine kinases by the GHR, with JAK2 activating STAT5, and Lyn activating ERK1/2. We provide evidence that Lyn signals through phospholipase C gamma, leading to activation of Ras. Accordingly, mice with mutations in the JAK2 association motif respond to GH with activation of hepatic Src and ERK1/2, but not JAK2/STAT5. We suggest that F'G' loop movement alters the signalling choice between JAK2 and a Src family kinase by regulating TMD realignment. Our findings could explain debilitated ERK but not STAT5 signalling in some GH-resistant dwarfs and suggest pathway-specific cytokine agonists.  相似文献   

5.
GH and IGF-I are critical regulators of growth and metabolism. GH interacts with the GH receptor (GHR), a cytokine superfamily receptor, to activate the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), and initiate intracellular signaling cascades. IGF-I, produced in part in response to GH, binds to the heterotetrameric IGF-I receptor (IGF-IR), which is an intrinsic tyrosine kinase growth factor receptor that triggers proliferation, antiapoptosis, and other biological actions. Previous in vitro and overexpression studies have suggested that JAKs may interact with IGF-IR and that IGF-I stimulation may activate JAKs. In this study, we explore interactions between GHR-JAK2 and IGF-IR signaling pathway elements utilizing the GH and IGF-I-responsive 3T3-F442A and 3T3-L1 preadipocyte cell lines, which endogenously express both the GHR and IGF-IR. We find that GH induces formation of a complex that includes GHR, JAK2, and IGF-IR in these preadipocytes. The assembly of this complex in intact cells is rapid, GH concentration dependent, and can be prevented by a GH antagonist, G120K. However, it is not inhibited by the kinase inhibitor, staurosporine, which markedly inhibits GHR tyrosine phosphorylation. Moreover, complex formation does not appear dependent on GH-induced activation of the ERK or phosphatidylinositol 3-kinase signaling pathways or on the tyrosine phosphorylation of GHR, JAK2, or IGF-IR. These results suggest that GH-induced formation of the GHR-JAK2-IGF-IR complex is governed instead by GH-dependent conformational change(s) in the GHR and/or JAK2. We further demonstrate that GH and IGF-I can synergize in acute aspects of signaling and that IGF-I enhances GH-induced assembly of conformationally active GHRs. These findings suggest the existence of previously unappreciated relationships between these two hormones.  相似文献   

6.
7.
8.
Sepsis results in hepatic "growth hormone (GH) resistance" with reductions in plasma IGF-I despite a two- to fourfold increase in circulating GH. In this study, we examine the effects of IL-1 on GH receptor (GHR) expression, GH signaling (via the JAK/STAT and MAPK pathways), and the induction of gene expression [IGF-I mRNA and serine protease inhibitor (Spi) 2.1] by GH in CWSV-1 hepatocytes. Incubation of cells with IL-1beta (10 ng/ml, 24 h) had no effect on the relative abundance of GHR or signaling proteins JAK2, STAT5b, and ERK1/2 in cell lysates. Baseline phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 was minimal. After GH stimulation, tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 increased 2- to 10-fold. However, neither the time course nor the magnitude of GHR, JAK2, and ERK1/2 phosphorylation by GH were significantly altered by IL-1. The GH-induced translocation of STAT5b to the nucleus was not prevented by IL-1. Although phosphorylated STAT5 in nuclear extracts from GH + IL-1 cells was decreased by 24% (vs. controls) 15 min after GH stimulation, this did not result in reduced STAT5-DNA binding activity. Pretreatment with IL-1 did not significantly decrease IGF-I mRNA stability. We conclude that IL-1 only minimally affects the time course of JAK2/STAT5 and MAPK signaling by GH. Therefore, an inhibitory effect of IL-1 on IGF-I and Spi 2.1 mRNA synthesis by GH represents the most likely mechanism for IL-1-mediated GH resistance.  相似文献   

9.
10.
11.
12.
GH signaling depends on functional interaction of the GH receptor (GHR) and the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), which possesses a C-terminal kinase domain, a catalytically inactive pseudokinase domain just N-terminal to the kinase domain, and an N-terminal half shown by us and others to harbor elements for GHR association. Computational analyses indicate that JAKs contain in their N termini ( approximately 450 residues) divergent FERM domains. FERM domains (or subdomains within them) in JAKS may be important for associations with cytokine receptors. For some cytokine receptors, JAK interaction may be required for receptor surface expression. We previously demonstrated that a JAK2 mutant devoid of its N-terminal 239 residues (JAK2-Delta1-239) did not associate with GHR and could not mediate GH- induced signaling. In this report we employ a JAK2-deficient cell line to further define N-terminal JAK2 regions required for physical and functional association with the GHR. We also examine whether JAK2 expression affects cell surface expression of the GHR. Our results suggest that FERM motifs play an important role in the interaction of GHR and JAK2. While JAK2 expression is not required for detectable surface GHR expression, an increased JAK2 level increases the fraction of GHRs that achieves resistance to deglycosylation by endoglycosidase H, suggesting that the GHR-JAK2 association may enhance either the receptor's efficiency of maturation or its stability. Further, we report evidence for the existence of a novel GH-inducible functional interaction between JAK2 molecules that may be important in the mechanism of GH-triggered JAK2 signaling.  相似文献   

13.
Growth hormone (GH) regulates body growth and metabolism. GH exerts its biological action by stimulating JAK2, a GH receptor (GHR)-associated tyrosine kinase. Activated JAK2 phosphorylates itself and GHR, thus initiating multiple signaling pathways. In this work, we demonstrate that platelet-derived growth factor (PDGF) and lysophosphatidic acid (LPA) down-regulate GH signaling via a protein kinase C (PKC)-dependent pathway. PDGF substantially reduces tyrosyl phosphorylation of JAK2 induced by GH but not interferon-gamma or leukemia inhibitory factor. PDGF, but not epidermal growth factor, decreases tyrosyl phosphorylation of GHR (by approximately 90%) and the amount of both total cellular GHR (by approximately 80%) and GH binding (by approximately 70%). The inhibitory effect of PDGF on GH-induced tyrosyl phosphorylation of JAK2 and GHR is abolished by depletion of 4beta-phorbol 12-myristate 13-acetate (PMA)-sensitive PKCs with chronic PMA treatment and is severely inhibited by GF109203X, an inhibitor of PKCs. In contrast, extracellular signal-regulated kinases 1 and 2 and phosphatidylinositol 3-kinase appear not to be involved in this inhibitory effect of PDGF. LPA, a known activator of PKC, also inhibits GH-induced tyrosyl phosphorylation of JAK2 and GHR and reduces the number of GHR. We propose that ligands that activate PKC, including PDGF, LPA, and PMA, down-regulate GH signaling by decreasing the number of cell surface GHR through promoting GHR internalization and degradation and/or cleavage of membrane GHR and release of the extracellular domain of GHR.  相似文献   

14.
The objective of this study was to determine if a functional heterodimer of prolactin receptor (PRLR) and growth hormone receptor (GHR) can be formed in humans. A novel ligand was designed that is composed of a GHR antagonist (B2036) and a PRLR antagonist (G129R) fused in tandem (B2036-G129R). Because both B2036 and G129R are binding site 2 inactive antagonists, the B2036-G129R fusion protein, in theory contains only two functional binding site 1s: one for GHR and one for PRLR. We examined the behavior of this chimeric ligand in cell lines known to express GHR, PRLR, or both receptors. The data presented show that B2036-G129R is inactive in IM-9 cells that express only GHR or Nb2 cells that express PRLR. In T-47D cells that coexpress PRLR and GHR, B2036-G129R activates JAK2/STAT5 signaling. These findings provide evidence that B2036-G129R is able to activate signal transduction through a heterodimer of PRLR and GHR in humans.  相似文献   

15.
The cellular and molecular basis of growth hormone (GH) actions on the heart remain poorly defined, and it is unclear whether GH effects on the myocardium are direct or mediated at least in part via insulin-like growth factor (IGF-1). Here, we demonstrate that the cultured neonatal cardiomyocyte is not an appropriate model to study the effects of GH because of artifactual loss of GH receptors (GHRs). To circumvent this problem, rat neonatal cardiomyocytes were infected with a recombinant adenovirus expressing the murine GHR. Functional integrity of GHR was suggested by GH-induced activation of the cognate JAK2/STAT5, MAPK, and Akt intracellular pathways in the cells expressing GHR. Although exposure to GH resulted in a significant increase in the size of the cardiomyocyte and increased expression of c-fos, myosin light chain 2, and skeletal alpha-actin mRNAs, there were no significant changes in IGF-1 or atrial natriuretic factor mRNA levels in response to GH stimulation. In this model, GH increased incorporation of leucine, uptake of palmitic acid, and abundance of fatty acid transport protein mRNA. In contrast, GH decreased uptake of 2-deoxy-d-glucose and levels of Glut1 protein. Thus, in isolated rat neonatal cardiomyocytes expressing GHR, GH induces hypertrophy and causes alterations in cellular metabolic profile in the absence of demonstrable changes in IGF-1 mRNA, suggesting that these effects may be independent of IGF-1.  相似文献   

16.
Insulin is important for maintaining the responsiveness of the liver to growth hormone (GH). Insulin deficiency results in a decrease in liver GH receptor (GHR) expression, which can be reversed by insulin administration. In osteoblasts, continuous insulin treatment decreases the fraction of cellular GHR localized to the plasma membrane. Thus, it is not clear whether hyperinsulinemia results in an enhancement or inhibition of GH action. We asked whether continuous insulin stimulation, similar to what occurs in hyperinsulinemic states, results in GH resistance. Our present studies suggest that insulin treatment of hepatoma cells results in a time-dependent inhibition of acute GH-induced phosphorylation of STAT5B. Whereas total protein levels of JAK2 were not reduced after insulin pretreatment for 16 h, GH-induced JAK2 phosphorylation was inhibited. There was a concomitant decrease in GH binding and a reduction in immunoreactive GHR levels following pretreatment with insulin for 8-24 h. In summary, continuous insulin treatment in rat H4 hepatoma cells reduces GH binding, immunoreactive GHR, GH-induced phosphorylation of JAK2, and GH-induced tyrosine phosphorylation of STAT5B. These findings suggest that hepatic GH resistance may develop when a patient exhibits chronic hyperinsulinemia, a condition often observed in patients with obesity and in the early stage of Type 2 diabetes.  相似文献   

17.
Determinants of growth hormone receptor down-regulation   总被引:1,自引:0,他引:1  
GH receptor (GHR) is a cytokine receptor family member that responds to GH by activation of the receptor-associated tyrosine kinase, JAK2 (Janus family of tyrosine kinase 2). We previously showed that JAK2, in addition to being a signal transducer, dramatically increases the half-life of mature GHR, partly by preventing constitutive GHR down-regulation. Herein we explored GHR and JAK2 determinants for both constitutive and GH-induced GHR down-regulation, exploiting the previously characterized GHR- and JAK2-deficient gamma2A reconstitution system. We found that JAK2's ability to protect mature GHR from rapid degradation measured in the presence of the protein synthesis inhibitor, cycloheximide, depended on the presence of GHR's Box 1 element and the intact JAK2 FERM (band 4.1/Ezrin/Radixin/Moesin); domain, but not the kinase-like or kinase domains of JAK2. Thus, GHR-JAK2 association, but not JAK2 kinase activity, is required for JAK2 to inhibit constitutive GHR down-regulation and enhance GHR half-life. In cells that expressed JAK2, but not cells lacking JAK2, GH markedly enhanced GHR degradation. Like JAK2-induced protection from constitutive down-regulation, GH-induced GHR down-regulation required the GHR Box 1 element and an intact JAK2 FERM domain. However, a JAK2 mutant lacking the kinase-like and kinase domains did not mediate GH-induced GHR down-regulation. Likewise, a kinase-deficient JAK2 was insufficient for this purpose, indicating that kinase activity is required. Both lactacystin (a proteasome inhibitor) and chloroquine (a lysosome inhibitor) blocked GH-induced GHR loss. Interestingly, GH-induced GHR ubiquitination, like down-regulation, was prevented in cells expressing a kinase-deficient JAK2 protein. Further, a GHR mutant, of which all the cytoplasmic tyrosine residues were changed to phenylalanines, was resistant to GH-induced GHR ubiquitination and down-regulation. Collectively, our data suggest that determinants required for JAK2 to protect mature GHR from constitutive degradation differ from those that drive GH-induced GHR down-regulation. The latter requires GH-induced JAK2 activation and GHR tyrosine phosphorylation and is correlated to GHR ubiquitination in our reconstitution system.  相似文献   

18.
Growth hormone (GH) initiates many of its growth-promoting actions by binding to GH receptors (GHR) and stimulating the synthesis and secretion of insulin-like growth factor-1 (IGF-1) from the liver and other sites. In this study, we used hepatocytes isolated from rainbow trout as a model system in which to determine the molecular signaling events of GH in fish. GH directly stimulated the phosphorylation of ERK, protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K), JAK2, and STAT5 in hepatocytes incubated in vitro. Activation of ERK, Akt, JAK2, and STAT5 was rapid, occurring within 5-10 min, and was concentration dependent. GH-induced ERK activation was completely blocked by the ERK pathway inhibitor, U0126, and the JAK2 inhibitor, 1,2,3,4,5,6-hexabromocyclohexane (Hex), and was partially blocked by the PI3K inhibitor LY294002. GH-stimulated Akt activation was completely blocked by LY294002 and Hex, but was not affected by U0126; whereas, STAT5 activation by GH was blocked only by Hex, and was not affected by either U0126 or LY294002. GH stimulated hepatic expression of IGF-1 mRNA as well as the secretion of IGF-1, effects that were partially or completely blocked by U0126, LY294002, and Hex. These results indicate that GHR linkage to the ERK, PI3K/Akt, or STAT pathways in trout liver cells requires activation of JAK2, and that GH-stimulated IGF-1 synthesis and secretion is mediated through the ERK, PI3K/Akt, and JAK-STAT pathways.  相似文献   

19.
Growth hormone (GH) signaling is required for promoting longitudinal body growth, stem cell activation, differentiation, and survival and for regulation of metabolism. Failure to adequately regulate GH signaling leads to disease: excessive GH signaling has been connected to cancer, and GH insensitivity has been reported in cachexia patients. Since its discovery in 1989, the receptor has served a pivotal role as the prototype cytokine receptor both structurally and functionally. Phosphorylation and ubiquitylation regulate the GH receptor (GHR) at the cell surface: two ubiquitin ligases (SCFβTrCP2 and CHIP) determine the GH responsiveness of cells by controlling its endocytosis, whereas JAK2 initiates the JAK/STAT pathway. We used blue native electrophoresis to identify phosphorylated and ubiquitylated receptor intermediates. We show that GHRs occur as ∼500-kDa complexes that dimerize into active ∼900-kDa complexes upon GH binding. The dimerized complexes act as platforms for transient interaction with JAK2 and ubiquitin ligases. If GH and receptors are made in the same cell (autocrine mode), only limited numbers of ∼900-kDa complexes are formed. The experiments reveal the dynamic changes in post-translational modifications during GH-induced signaling events and show that relatively simple cytokine receptors like GHRs are able to form higher order protein complexes. Insight in the complex formation of cytokine receptors is crucially important for engineering cytokines that control ligand-induced cell responses and for generating a new class of therapeutic agents for a wide range of diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号