首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谈地球生物学的重要意义   总被引:2,自引:0,他引:2  
地球生物学是地球科学与生命科学交叉形成的一级学科,它研究作为地球系统三大基本过程之一的生命过程,即生物圈与地球其他圈层的相互作用.不仅是地球影响生物圈.而且生物圈也影响地球系统.这种相互作用或影响,从地球历史早期到现在,是一直在协同、耦合地进行着.生命与地球环境的协同演化是地球生物学的核心.当前地球生物学发展的重点是地球微生物学.宏体生物能反映地球环境对它们的影响及它们对环境的适应,但除植物外,它们对环境的影响有限.了解生物圈与地圈双向的相互作用必须研究地球微生物学.生命科学和整个自然科学都在向微观方向发展,不断形成新的理论和技术方法.古生物学不能停留在以古动、植物学为主的阶段,而要与生命科学和整个自然科学保持同步发展.现在我们已经找到了解决微生物与地质研究相结合问题的途径.微生物功能群具有重要的地质学意义,是研究地球微生物学的突破口.地球生物学是古生物学的继承和超越.分类系统学将仍然是研究的基础,但是包含了传统古生物学的地球生物学在学科内容和技术方法上将更多地与物理、化学、生物等学科交叉融合.其结果将使古生物学在时间上更前溯,在空间上更开拓,为古生物学在地球系统科学研究和为国民经济主战场服务中开辟更广阔的前景.  相似文献   

2.
The state of health or disease is determined by the nature of the organism, the properties of the biosphere, the heterogeneity of its natural geochemical composition and changes brought about by technology (technogenic changes). For a systematic study of the conditions of health and endemic diseases we have suggested a system of biogeochemical regionalizing of the biosphere with the aid of biospheric taxa: regions of the biosphere, subregions of the biosphere, biogeochemical provinces. The main criteria of the regionalizing are biogenous cycles of chemical elements (links of the biogeochemical food chain from soil-forming rocks to man). An important criterion of the biogeochemical regionalizing is threshold concentrations of chemical elements. The organism regulates its metabolism within the ranges of chemical element concentration between the upper and lower thresholds (necessity range). When chemical elements are present in concentrations above the upper threshold and below the lower threshold, dysfunctions and endemic diseases are observed. Hence, the biogeochemical food chain allows us to establish critical links responsible for the state of health or endemic disease. Principles of optimizing the conditions of the environment and life have been worked out. The creation by us in the U.S.S.R. of biogeochemical maps relating conditions of the environment to biological reactions of organisms has proved a useful method of studying the ecological structure of the biosphere.  相似文献   

3.
This paper considers the needs and potentials for the development of the biosphere. An emphasis is placed on the unusual qualities of the biosphere, such as important time lags, interactions between life and its environment at large scales, and biological evolution, which has led to large scale changes in the environment during the Earth's history. These qualities require a different approach to the development of a theory for this large scale system than has been used in the past, when the biosphere was treated as a steady-state, quasilinear system. Other aspects of the development of the science of the biosphere, including the use of remote sensing, are reviewed, and the application of these techniques to the estimation of certain biological variables is discussed.  相似文献   

4.
All biological processes of life on Earth experience varying degrees of pressure. Aquatic organisms living in the deep-sea, as well as chondrocytic cells of articular cartilage are exposed to hydrostatic pressures that rise up to several hundred times that of atmospheric pressure. In the case of marine larvae that disperse through the oceanic water column, pressure changes might be responsible for stress conditions during development, limiting colonisation capabilities. In a number of biological systems, life strategies may be significantly influenced by pressure. In this review, we will focus on the consequences of pressure changes on various biological processes, and more specifically on animals living in the deep-sea. Revisiting general principles of pressure effects on biological systems, we present recent data illustrating the diversity of effects pressure may have at different levels in biological systems, with particular attention to effects on gene expression. After a review of the main pressure equipments available today for studying species living naturally at high pressure, we summarise what is known concerning pressure impact during animal development.  相似文献   

5.
6.
Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis.  相似文献   

7.
8.
Monitoring programs designed to assess changes in population size over time need to account for imperfect detection and provide estimates of precision around annual abundance estimates. Especially for species dependent on conservation management, robust monitoring is essential to evaluate the effectiveness of management. Many bird species of temperate grasslands depend on specific conservation management to maintain suitable breeding habitat. One such species is the Aquatic Warbler (Acrocephalus paludicola), which breeds in open fen mires in Central Europe. Aquatic Warbler populations have so far been assessed using a complete survey that aims to enumerate all singing males over a large area. Because this approach provides no estimate of precision and does not account for observation error, detecting moderate population changes is challenging. From 2011 to 2013 we trialled a new line transect sampling monitoring design in the Biebrza valley, Poland, to estimate abundance of singing male Aquatic Warblers. We surveyed Aquatic Warblers repeatedly along 50 randomly placed 1-km transects, and used binomial mixture models to estimate abundances per transect. The repeated line transect sampling required 150 observer days, and thus less effort than the traditional ‘full count’ approach (175 observer days). Aquatic Warbler abundance was highest at intermediate water levels, and detection probability varied between years and was influenced by vegetation height. A power analysis indicated that our line transect sampling design had a power of 68% to detect a 20% population change over 10 years, whereas raw count data had a 9% power to detect the same trend. Thus, by accounting for imperfect detection we increased the power to detect population changes. We recommend to adopt the repeated line transect sampling approach for monitoring Aquatic Warblers in Poland and in other important breeding areas to monitor changes in population size and the effects of habitat management.  相似文献   

9.
试析光合作用的研究动向   总被引:1,自引:0,他引:1  
光合作用被称为"地球上最重要的化学反应"和"生命界最重大的顶极创造之一",在生物演化、生物圈形成和运转及人类诞生与经济和社会的可持续发展等过程中都处于非常关键的地位。从最近召开的国际和国内光合作用会议来看,当前进行的研究呈现出领域越来越宽广、层次越来越深入、技术越来越先进的特点;研究重点集中在探讨光合作用反应机理、结构与功能,揭示光合机构组装、运转与调节机制及光合作用与人类可持续发展3个方面。  相似文献   

10.
Knowledge of our Planet's biosphere has increased tremendously during the last 10 to 20 years. In the field of Microbiology in particular, scientists have discovered novel "extremophiles", microorganisms capable of living in extreme environments such as highly acidic or alkaline conditions, at high salt concentration, with no oxygen, extreme temperatures (as low as -20 degrees C and as high as 300 degrees C), at high concentrations of heavy metals and in high pressure environments such as the deep-sea. It is apparent that microorganisms can exist in any extreme environment of the Earth, yet already scientists have started to look for life on other planets; the so-called "Exobiology" project. But as yet we have little knowledge of the deep-sea and subsurface biosphere of our own planet. We believe that we should elucidate the Biodiversity of Earth more thoroughly before exploring life on other planets, and these attempts would provide deeper insight into clarifying the existence of extraterrestrial life. We focused on two deep-sea extremophiles in this article; one is "Piezophiles", and another is "Hyperthermophiles". Piezophiles are typical microorganisms adapted to high-pressure and cold temperature environments, and located in deep-sea bottom. Otherwise, hyperthermophiles are living in high temperature environment, and located at around the hydrothermal vent systems in deep-sea. They are not typical deep-sea microorganisms, but they can grow well at high-pressure condition, just like piezophiles. Deming and Baross mentioned that most of the hyperthermophilic archaea isolated from deep-sea hydrothermal vents are able to grow under conditions of high temperature and pressure, and in most cases their optimal pressure for growth was greater than the environmental pressure they were isolated from. It is possible that originally their native environment may have been deeper than the sea floor and that there had to be a deeper biosphere. This implication suggests that the deep-sea hydrothermal vents are the windows to a deep subsurface biosphere. A vast array of chemoautotrophic deep-sea animal communities have been found to exist in cold seep environments, and most of these animals are common with those found in hydrothermal vent environments. Thus, it is possible to consider that the cold seeps are also one of slit windows to a deep subsurface biosphere. We conclude that the deep-sea extremophiles are very closely related into the unseen majority in subsurface biosphere, and the subsurface biosphere probably concerns to consider the "exobiology".  相似文献   

11.
A major part of the biologic activity on Earth is hidden underneath our feet in an environment coined the deep biosphere which stretches several kilometers down into the bedrock. The knowledge about life in this vast energy-poor deep system is, however, extremely scarce, particularly for micro-eukaryotes such as fungi, as most studies have focused on prokaryotes. Recent findings suggest that anaerobic fungi indeed thrive at great depth in fractures and cavities of igneous rocks in both the oceanic and the continental crust. Here we discuss the potential importance of fungi in the deep biosphere, in particular their involvement in fundamental biogeochemical processes such as symbiotic relationships with prokaryotes that may have significant importance for the overall energy cycling within this vast subsurface realm. Due to severe oligotrophy, the prokaryotic metabolism at great depth in the crust is very slow and dominantly autotrophic and thus dependent on e.g. hydrogen gas, but the abiotic production of this gas is thought to be insufficient to fuel the deep autotrophic biosphere. Anaerobic fungi are heterotrophs that produce hydrogen gas in their metabolism and have therefore been put forward as a hypothetical provider of this substrate to the prokaryotes. Recent in situ findings of fungi and isotopic signatures within co-genetic sulfide minerals formed from bacterial sulfate reduction in the deep continental biosphere indeed seem to confirm the fungi-prokaryote hypothesis. This suggests that fungi play a fundamental biogeochemical role in the deep biosphere.  相似文献   

12.
The incorporation of metal cofactors into protein active sites and/or active regions expanded the network of microbial metabolism during the Archean eon. The bioavailability of crucial metal cofactors is largely influenced by earth surface redox state, which impacted the timing of metabolic evolution. Vanadium (V) is a unique element in geo–bio‐coevolution due to its complex redox chemistry and specific biological functions. Thus, the extent of microbial V utilization potentially represents an important link between the geo‐ and biospheres in deep time. In this study, we used geochemical modeling and network analysis to investigate the availability and chemical speciation of V in the environment, and the emergence and changing chemistry of V‐containing minerals throughout earth history. The redox state of V shifted from a more reduced V(III) state in Archean aqueous geochemistry and mineralogy to more oxidized V(IV) and V(V) states in the Proterozoic and Phanerozoic. The weathering of vanadium sulfides, vanadium alkali metal minerals, and vanadium alkaline earth metal minerals were potential sources of V to the environment and microbial utilization. Community detection analysis of the expanding V mineral network indicates tectonic and redox influence on the distribution of V mineral‐forming elements. In reducing environments, energetic drivers existed for V to potentially be involved in early nitrogen fixation, while in oxidizing environments vanadate () could have acted as a metabolic electron acceptor and phosphate mimicking enzyme inhibitor. The coevolving chemical speciation and biological functions of V due to earth's changing surface redox conditions demonstrate the crucial links between the geosphere and biosphere in the evolution of metabolic electron transfer pathways and biogeochemical cycles from the Archean to Phanerozoic.  相似文献   

13.
Microbiology of ancient and modern hydrothermal systems   总被引:14,自引:0,他引:14  
Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.  相似文献   

14.
Impact of solar ultraviolet-B radiation (290-320 nm) upon marine microalgae   总被引:1,自引:0,他引:1  
For years scientists and laymen alike have casually noted the impact of solar ultraviolet radiation upon the non-human component of the biosphere. It was not until recently, when human activities were thought to threaten the protective stratospheric ozone shield, that researchers undertook intensive studies into the biological stress caused by the previously neglected short-wavelength edge of the global solar spectrum. Stratospheric ozone functions effectively as an ultraviolet screen by filtering out solar radiation in the 220–320 nm waveband as it penetrates through the atmosphere, thus allowing only small amounts of the longer wavelengths of radiation in this waveband to leak through to the surface of the earth. Although this ultraviolet radiation (UV-B radiation, 290–320 nm) comprises only a small fraction (less than 1%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA and proteins, absorb UV-B radiation which can initiate photochemical reactions. It is life's ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated the concern over the potential depletion of stratospheric ozone. The defense mechanisms that serve to protect both plants and animals from current levels of UV-B radiation are quite varied. Whether these mechanisms will suffice for marine microalgae under conditions of enhanced levels of UV-B radiation is the subject of this review.  相似文献   

15.
Metagenomic Characterization of Chesapeake Bay Virioplankton   总被引:7,自引:1,他引:6       下载免费PDF全文
Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by Podoviridae.  相似文献   

16.
Zooplankton support a variety of important ecosystem processes in lakes but our understanding of how these organisms respond to ongoing climate change is superficial. Aquatic ecosystems have been exposed to substantial climate warming in the last century, and this trend is certain to continue, especially in northern latitudes. We analyzed a long time series of a variety of physical attributes of Lake Aleknagik, southwest Alaska, to quantify warming trends between 1963 and 2009, and to assess zooplankton community responses to variation in thermal conditions. Our analyses demonstrate clear trends toward earlier spring ice break-up, increases in average epilimnetic temperatures and an 18.5% increase in summer epilimnetic degree days since 1963. We estimated the magnitude and direction of changes in zooplankton production and end of season densities in response to changes in thermal environment, then explored whether the climate-driven responses in production are common in five large lakes that are distributed across a coastal-interior landscape gradient. Although we detected no clear directional changes in zooplankton densities or production rates, there were clear correlations between these variables and interannual variation in thermal conditions. The positive effects of earlier spring ice break-up and increase in summer degree days were strongest on the production and density responses of Daphnia and Bosmina, and the lagged effect of temperature was important and negative only for calanoid copepods. There was a negative effect of sockeye escapement to Lake Aleknagik in the previous year on all taxa. There were lake-specific effects of changes in the thermal environment on almost all taxa and small gradients in the magnitude of responses across the landscape, but no systematic patterns of landscape control.  相似文献   

17.
The atmosphere of the earth differs greatly from that of the other terrestrial planets with respect to composition, acidity, redox potential and temperature history predicted from solar luminosity. From the fossil record it can be deduced that stable optimal conditions for the biosphere have prevailed for thousands of millions of years. We believe that these properties of the terrestrial atmosphere are best interpreted as evidence of homeostasis on a planetary scale maintained by life on the surface. Some possible mechanisms of this biological homeostasis have been noted and the implications of this concept for experimental studies pointed out.  相似文献   

18.
Basic provisions of an original concept of biosphere germination are enumerated. Formation of primary microorganisms and communities is considered from the viewpoint of crucial transformations in compartments of organic matter that led to the emergence of fundamental properties of biological systems. The necessary initial condition was the transition of organic microsystems in the bifurcation state which maintained continuing dynamic processes in them. The decisive stage of transformation of microsystems in protobionts (initial forms of life) comprised their acquiring ability to concentrate free energy and information at the expense of fortified reactions to external influences, exerted by the fluctuating hydrothermal environment. The primary biosphere was formed during the evolution of microorganism types in the direction probionts-progenotes-prokaryotes.  相似文献   

19.
Limnology - Aquatic macroinvertebrate communities are dependent on intrinsic environmental characteristics and biological interactions in microhabitat systems. We investigated the...  相似文献   

20.
适冷微生物及其适冷机制研究进展   总被引:7,自引:0,他引:7  
地球上许多生境为永久低温或季节性低温环境,适冷微生物在自然界中广泛存在。适冷微生物在环境净化、饲料、食品、奶制品、化妆品、皮革加工、洗涤等行业中具有广泛的应用前景。对适冷微生物的多样性、适冷的分子基础和适冷代谢机制进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号