首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for life on the edge of global biosphere is a frontier to bridge conventional bio/ecology and exo/astrobiology. This communication reviews the foci of microbiological studies on the inhabitants of the selected "edges", i.e., deep-sea, deep subsurface and Antarctic habitats. The deep-sea is characterized as the no-light (non-photosynthetic) habitat, and the primary production is mostly due to the chemosynthetic autotrophy at the hydrothermal vents and methane-rich seeps. Formation of the chemosynthesis-dependent animal communities in the deep leads to the idea that such communities may be found in "ocean" of the Jovian satellite, Europa. The oxygen minimal layer (OML) in mid-water provides another field of deep-sea research. Modern OML is a relatively thin layer, found between the water depth of 200 and 1000 m, but was much thicker during the periods of oceanic anoxia events (OAEs) in the past. The history of oceanic biosphere is regarded as the cycle of OAE and non-OAE periods, and the remnants of the past OAEs may be seen in the modem OML. Anoxic (no-O2) condition is also characteristic of deep subsurface biosphere. Microorganisms in deep subsurface biosphere exploit every available oxidant, or terminal electron acceptor (TEA), for anaerobic respiration. Sulfate, nitrate, iron (III) and CO2 are the representative TEAs in the deep subsurface. Subsurface of hydrothermal vents, or sub-vent biosphere, may house brine (high salt) habitats and halophilic microorganisms. Some sub-vent halophiles were phylogenetically closely similar to the ones found in the Antarctic habitats which are extremely dry by the liophilizing climate. Below the 3000-4000 m-thick glacier on Antarctica, there have been >70 lakes with liquid water located. One of such sub-glacial lakes, Lake Vostok, has been a target of "life in extreme environments" and is about to be drill-penetrated for microbiological studies. These 'microbiological platforms' will provide new knowledge about the diversity and potential of the Earth's life and facilitate the capability of astrobiologial exploration.  相似文献   

2.
The life in deep biospheres bridges conventional biology and future exobiology. This review focuses the microbiological studies from the selected deep biospheres, i.e., deep-sea hydrothermal vents, sub-hydrothermal vents, terrestrial subsurface and a sub-glacier lake. The dark biospheres facilitate the emergence of organisms and communities dependent on chemolithoautotrophy, which are overwhelmed by photoautotrophy (photosynthesis) in the surface biospheres. The life at deep-sea hydrothermal vents owes much to chemolithoautotrophy based on the oxidation of sulfide emitted from the vents. It is likely that similarly active bodies such as the Jovian satellite Europa may have hydrothermal vents and associated biological communities. Anoxic or anaerobic condition is characteristic of deep subsurface biospheres. Subsurface microorganisms exploit available oxidants, or terminal electron acceptors (TEA), for anaerobic respiration. Sulfate, nitrate, iron (III) and CO2 are the representative TEAs in the deep subsurface. Below the 3000-4000 m-thick glacier on Antarctica, there have been >70 lakes with liquid water located. One of such sub-glacial lakes, Lake Vostok, is about to be drill-penetrated for microbiological studies. These deep biosphere "platforms" provide new knowledge about the diversity and potential of the Earth's life. The expertise obtained from the deep biosphere expeditions will facilitate the capability of exobiologial exploration.  相似文献   

3.
Microbes from extreme environments do not necessarily require extreme culture conditions. Perhaps the most extreme environments known, deep-sea hydrothermal vent sites, support an incredible array of archaea, bacteria, and fungi, many of which have now been cultured. Microbes cultured from extreme environments have not disappointed in the natural products arena; diverse bioactive secondary metabolites have been isolated from cultured extreme-tolerant microbes, extremophiles, and deep-sea microbes. The contribution of vent microbes to our arsenal of natural products will likely grow, given the culturability of vent microbes; their metabolic, physiologic, and phylogenetic diversity; numerous reports of bioactive natural products from microbes inhabiting high acid, high temperature, or high pressure environments; and the recent isolation of new chroman derivatives and siderophores from deep-sea hydrothermal vent bacteria.  相似文献   

4.
汤伟  张军  李广善  王悦  何增国 《微生物学报》2019,59(7):1241-1252
海洋覆盖了地球表面积的四分之三,它不仅是生命的起源,而且还孕育了各种极端微生物。它们存在于海洋极端环境中,如热液喷口、热泉、咸湖和深海层等,由于生境太过恶劣,一度被认为是生命的禁区。随着人类对深海极端环境微生物研究的不断深入,已经探索到那里具有丰富的菌群资源和具有潜在价值的天然生物活性产物。这些极端微生物能够适应极高温、极低温、高压、高盐、高放射性和极度酸碱性等极端环境,具有特殊的生物多样性、遗传背景和代谢途径,能够产生各种具有特殊功能的酶类及其他活性物质,展现出巨大的研究价值和应用潜力。研究海洋极端微生物对探索生物多样性、新资源开发利用及对地球生物学研究等都具有重要意义。  相似文献   

5.
Feast and famine--microbial life in the deep-sea bed   总被引:4,自引:0,他引:4  
The seabed is a diverse environment that ranges from the desert-like deep seafloor to the rich oases that are present at seeps, vents, and food falls such as whales, wood or kelp. As well as the sedimentation of organic material from above, geological processes transport chemical energy--hydrogen, methane, hydrogen sulphide and iron--to the seafloor from the subsurface below, which provides a significant proportion of the deep-sea energy. At the sites on the seafloor where chemical energy is delivered, rich and diverse microbial communities thrive. However, most subsurface microorganisms live in conditions of extreme energy limitation, with mean generation times of up to thousands of years. Even in the most remote subsurface habitats, temperature rather than energy seems to set the ultimate limit for life, and in the deep biosphere, where energy is most depleted, life might even be based on the cleavage of water by natural radioisotopes. Here, we review microbial biodiversity and function in these intriguing environments.  相似文献   

6.
Barophiles: deep-sea microorganisms adapted to an extreme environment   总被引:8,自引:0,他引:8  
The deep-sea environment is characterized by high pressure and low temperature but in the vicinity of hydrothermal vents regions of extremely high temperature exist. Deep-sea microorganisms have specially adapted features that enable them to live and grow in this extreme environment. Recent research on the physiology and molecular biology of deep-sea barophilic bacteria has identified pressure-regulated operons and shown that microbial growth is influenced by the relationship between temperature and pressure in the deep-sea environment.  相似文献   

7.
Cold-adapted archaea   总被引:1,自引:0,他引:1  
Many archaea are extremophiles. They thrive at high temperatures, at high pressure and in concentrated acidic environments. Nevertheless, the largest proportion and greatest diversity of archaea exist in cold environments. Most of the Earth's biosphere is cold, and archaea represent a significant fraction of the biomass. Although psychrophilic archaea have long been the neglected majority, the study of these microorganisms is beginning to come of age. This review casts a spotlight on the ecology, adaptation biology and unique science that is being realized from studies on cold-adapted archaea.  相似文献   

8.
The most recent publications on the phylogenetic and functional diversity of thermophilic prokaryotes inhabiting thermal deep-sea environments are reviewed. Along with a general physicochemical characterization of the biotope studied, certain adaptation mechanisms are discussed that are peculiar to the microorganisms inhabiting it. A separate chapter addresses the phylogenetic analysis of deep-sea hydrothermal microbial communities and uncultivated microorganisms recently discovered therein using molecular biological techniques. Physiological groups of thermophilic microorganisms found in deep-sea hydrothermal vents are considered: methanogens, sulfate-, iron-, and sulfur-reducers, aerobic hydrogen-oxidizing prokaryotes, aerobic and anaerobic organotrophs. In most cases, the isolates represent novel taxons.  相似文献   

9.
The tolerance limits of extremophiles in term of temperature, pH, salinity, desiccation, hydrostatic pressure, radiation, anaerobiosis far exceed what can support non-extremophilic organisms. Like all other organisms, extremophiles serve as hosts for viral replication. Many lines of evidence suggest that viruses could no more be regarded as simple infectious “fragments of life” but on the contrary as one of the major components of the biosphere. The exploration of niches with seemingly harsh life conditions as hypersaline and soda lakes, Sahara desert, polar environments or hot acid springs and deep sea hydrothermal vents, permitted to track successfully the presence of viruses. Substantial populations of double-stranded DNA virus that can reach 109 particles per milliliter were recorded. All these viral communities, with genome size ranging from 14 kb to 80 kb, seem to be genetically distinct, suggesting specific niche adaptation. Nevertheless, at this stage of the knowledge, very little is known of their origin, activity, or importance to the in situ microbial dynamics. The continuous attempts to isolate and to study viruses that thrive in extreme environments will be needed to address such questions. However, this topic appears to open a new window on an unexplored part of the viral world. Marc Le Romancer and Mélusine Gaillard contributed equally to this work.  相似文献   

10.
Deep-sea hydrothermal vents and methane seeps are extreme environments that have a high concentration of hydrogen sulphide. However, abundant unique invertebrates including shrimps of the family Bresiliidae have been found in such environments. The bresiliid shrimps are believed to have radiated in the Miocene (less than 20 Myr); however, the period when and the mechanisms by which they dispersed across the hydrothermal vents and cold seeps in oceans worldwide have not been clarified. In the present study, we collected the deep-sea blind shrimp Alvinocaris longirostris from the hydrothermal vent site in the Okinawa Trough and carried out the first investigation of the 18S rRNA gene of a bresiliid shrimp. The phylogenetic analysis revealed that the bresiliid shrimp is situated at an intermediate lineage within the infraorder Caridea and shows monophyly with palaemonid shrimps, which live in shallow sea and freshwater. Furthermore, the mitochondrial cytochrome oxidase I (COI) gene sequences were analysed to determine the phylogenetic relationship with known bresiliid shrimps. A. longirostris of the Okinawa Trough had two haplotypes of the COI gene, one of which was identical to the Alvinocaris sp. of the cold seeps in Sagami Bay. These results indicate that a long-distance dispersal of A. longirostris occurred possibly within the last 100,000 years.  相似文献   

11.
The deep-sea hydrothermal vents are located along the volcanic ridges and are characterized by extreme conditions such as unique physical properties (temperature, pression), chemical toxicity, and absence of photosynthesis. However, life exists in these particular environments. The primary producers of energy and organic molecules in these biotopes are chimiolithoautotrophic bacteria. Many animals species live in intimate and complex symbiosis with these sulfo-oxidizing and methanogene bacteria. These symbioses imply a strategy of nutrition and a specific metabolic organization involving numerous interactions and metabolic exchanges, between partners. The organisms of these ecosystems have developed different adaptive strategies. In these environments many microorganisms are adapted to high temperatures. Moreover to survive in these environments, living organisms have developed various strategies to protect themselves against toxic molecules such as H2S and heavy metals.  相似文献   

12.
Genetic diversity of archaea in deep-sea hydrothermal vent environments.   总被引:33,自引:0,他引:33  
K Takai  K Horikoshi 《Genetics》1999,152(4):1285-1297
Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.  相似文献   

13.
14.
The past 20 years have witnessed the publication of numerous studies on hemoglobins (Hbs) from deep-sea animals. Most of the animals studied were collected at deep-sea hydrothermal vents and cold seeps, both being environments where the physical-chemical conditions may be severely challenging for metazoans. These environments may be characterized by deep, chronic hypoxia and high concentrations of toxic compounds such as sulfide and heavy metals. Many species from these environments express Hbs, even though they belong to taxa that otherwise were characterised by the absence of respiratory pigments. Hbs from vent and seep invertebrates commonly exhibit high affinities for oxygen when compared to related species from normoxic, shallow-water environments, and marked pH-dependence. These high affinities permit uptake of oxygen from hypoxic waters and the strong Bohr effects favor its release in the metabolizing acidic organs.  相似文献   

15.

Background

Copepoda is one of the most prominent higher taxa with almost 80 described species at deep-sea hydrothermal vents. The unique copepod family Dirivultidae with currently 50 described species is the most species rich invertebrate family at hydrothermal vents.

Methodology/Principal Findings

We reviewed the literature of Dirivultidae and provide a complete key to species, and map geographical and habitat specific distribution. In addition we discuss the ecology and origin of this family.

Conclusions/Significance

Dirivultidae are only present at deep-sea hydrothermal vents and along the axial summit trough of midocean ridges, with the exception of Dirivultus dentaneus found associated with Lamellibrachia species at 1125 m depth off southern California. To our current knowledge Dirivultidae are unknown from shallow-water vents, seeps, whale falls, and wood falls. They are a prominent part of all communities at vents and in certain habitat types (like sulfide chimneys colonized by pompei worms) they are the most abundant animals. They are free-living on hard substrate, mostly found in aggregations of various foundation species (e.g. alvinellids, vestimentiferans, and bivalves). Most dirivultid species colonize more than one habitat type. Dirivultids have a world-wide distribution, but most genera and species are endemic to a single biogeographic region. Their origin is unclear yet, but immigration from other deep-sea chemosynthetic habitats (stepping stone hypothesis) or from the deep-sea sediments seems unlikely, since Dirivultidae are unknown from these environments. Dirivultidae is the most species rich family and thus can be considered the most successful taxon at deep-sea vents.  相似文献   

16.
Over the past 35 years, researchers have explored deep-sea hydrothermal vent environments around the globe and studied a number of archaea, their unique metabolic and physiological properties, and their vast phylogenetic diversity. Although the pace of discovery of new archaeal taxa, phylotypes and phenotypes in deep-sea hydrothermal vents has slowed recently, bioinformatics and interdisciplinary geochemistry-microbiology approaches are providing new information on the diversity and community composition of archaea living in deep-sea vents. Recent investigations have revealed that archaea could have originated and dispersed from ancestral communities endemic to hydrothermal vents into other biomes on Earth, and the community structure and productivity of chemolithotrophic archaea are controlled primarily by variations in the geochemical composition of hydrothermal fluids.  相似文献   

17.
Active deep-sea hydrothermal vents are areas of intense mixing and severe thermal and chemical gradients, fostering a biotope rich in novel hyperthermophilic microorganisms and metabolic pathways. The goal of this study was to identify the earliest archaeal colonizers of nascent hydrothermal chimneys, organisms that may be previously uncharacterized as they are quickly replaced by a more stable climax community. During expeditions in 2001 and 2002 to the hydrothermal vents of the East Pacific Rise (EPR) (9 degrees 50'N, 104 degrees 17'W), we removed actively venting chimneys and in their place deployed mineral chambers and sampling units that promoted the growth of new, natural hydrothermal chimneys and allowed their collection within hours of formation. These samples were compared with those collected from established hydrothermal chimneys from EPR and Guaymas Basin vent sites. Using molecular and phylogenetic analysis of the 16S rDNA, we show here that at high temperatures, early colonization of a natural chimney is dominated by members of the archaeal genus Ignicoccus and its symbiont, Nanoarchaeum. We have identified 19 unique sequences closely related to the nanoarchaeal group, and five archaeal sequences that group closely with Ignicoccus. These organisms were found to colonize a natural, high temperature protochimney and vent-like mineral assemblages deployed over high temperature outflows within 92 h. When compared phylogenetically, several of these colonizing organisms form a unique clade independent of those found in mature chimneys and low-temperature mineral chamber samples. As a model ecosystem, the identification of pioneering consortia in deep-sea hydrothermal vents may help advance the understanding of how early microbial life forms gained a foothold in hydrothermal systems on early Earth and potentially on other planetary bodies.  相似文献   

18.
Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.  相似文献   

19.
Geothermally heated regions of Earth, such as terrestrial volcanic areas (fumaroles, hot springs, and geysers) and deep-sea hydrothermal vents, represent a variety of different environments populated by extremophilic archaeal and bacterial microorganisms. Since most of these microbes thriving in such harsh biotopes, they are often recalcitrant to cultivation; therefore, ecological, physiological and phylogenetic studies of these microbial populations have been hampered for a long time. More recently, culture-independent methodologies coupled with the fast development of next generation sequencing technologies as well as with the continuous advances in computational biology, have allowed the production of large amounts of metagenomic data. Specifically, these approaches have assessed the phylogenetic composition and functional potential of microbial consortia thriving within these habitats, shedding light on how extreme physico-chemical conditions and biological interactions have shaped such microbial communities. Metagenomics allowed to better understand that the exposure to an extreme range of selective pressures in such severe environments, accounts for genomic flexibility and metabolic versatility of microbial and viral communities, and makes extreme- and hyper-thermophiles suitable for bioprospecting purposes, representing an interesting source for novel thermostable proteins that can be potentially used in several industrial processes.  相似文献   

20.
Zoosporic true fungi are thought to be ubiquitous in many ecosystems, especially in cool, moist soils and freshwater habitats which are rich in organic matter. However, some of the habitats where these fungi are found may periodically experience extreme conditions, such as soils in extremely dry, hot and cold climates, acidic and alkaline soils, polluted rivers, anaerobic soil and water, saline soil and water, periglacial soils, oligotrophic soils, tree canopies and hydrothermal vents. It is clear that many ecotypes of zoosporic true fungi have indeed adapted to extreme or stressful environmental conditions. This conclusion is supported by studies in both the field and in the laboratory. Therefore, in our opinion, at least some true zoosporic fungi can be considered to be extremophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号