首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
阵列生物传感器技术作为一种高通量、快速、选择性高和集成化的分析技术,已在基因组学和蛋白质组学的研究和药物筛选、环境分析,食品分析,临床诊断等领域中得到广泛的应用.阵列生物传感器主要有阵列光学生物传感器和阵列电化学生物传感器.阵列电化学生物传感器是将生物分子识别物质如酶、抗原/抗体、DNA等固定在阵列电极上,以阵列中每根电极产生的电化学信号作为检测信号的电化学分析器件.阵列电化学生物传感器以灵敏度高、分析速度快、选择性好、易于微型化和集成化以及仪器价格低廉等特点受到了研究工作者的极大关注.本文简单介绍了阵列电化学生物传感器的原理和特点,重点评述了2005年以来阵列电化学生物传感器在单组份检测和多组份同时检测两方面的研究进展,简单讨论了阵列电化学生物传感器研究中存在的问题.  相似文献   

2.
简要介绍了阵列生物传感器的基本原理和分类。根据换能器的不同,评述了光学、电化学、质量型、磁致阻抗等阵列生物传感器的研究进展,并对目前阵列生物传感器研究中存在的问题进行了分析。  相似文献   

3.
报道了一种光纤DNA传感器及其阵列的新的制备方法,以及应用该阵列同时进行多基因检测的结果.光纤经0.2%的poly-l-lysine处理后,可用于吸附寡核苷酸探针,探针经固定后即制成一种光纤DNA传感器.将携带不同基因探针的传感器排成一个阵列,可用于多个基因的同时检测.用含有p53,N-ras,Rb1基因探针的阵列进行实验的结果表明,这种传感器及其阵列可用于特定基因的探测,或多个基因的同时检测.  相似文献   

4.
气体生物传感器是基于生物识别、生物转化及气体信号输出的传感器。近年来,由于气体生物传感器具有操作简单、灵敏度高、特异性好等特点,被应用于生物标志物、细胞、蛋白等靶物质的检测中。介绍了气体生物传感器的性质和分类,并分别阐述了蛋白酶介导的气体生物传感器、核酸酶介导的气体生物传感器、模拟酶介导的气体生物传感器和其他气体生物传感器的原理和应用,展望了气体生物传感器的检测手段和应用前景,为气体生物传感器的研究提供了参考。  相似文献   

5.
本文概述了当前生物传感器的研究特点以及发展DNA生物传感器的迫切性;从不同角度阐述了DNA生物传感器的概念和研究内容;着重讨论了DNA生物传感器的研究现状和发展趋势。文中分别对DNA光生物传感器和DNA压电晶体生物传感器的基本原理、特点、研究进展及存在的问题进行了分析与说明。进而,对我国DNA生物传感器研究存在的差距和发展前景进行了简要论述。  相似文献   

6.
荧光纳米生物传感器检测物质具有灵敏度高、响应迅速、抗干扰性强、无需参比电极等特点而被广泛地运用于生物传感技术领域。本文综述了荧光纳米生物传感器种类和特点,介绍了国内外近期在荧光纳米生物传感器及在生物检测方面的一些研究成果及进展,并作了分析比较。着重讨论了纳米粒子荧光生物传感器和光纤纳米荧光生物传感器的特性及其在生物分析中的应用。  相似文献   

7.
DNA传感器研究进展   总被引:3,自引:0,他引:3  
本文概述了当前生物传感器的研究特点以及发展DNA生物传感器的迫切性;从不同角度阐述了DNA生物传感器的概念和研究内容;着重讨论了DNA生物传感器的研究现状和发展趋势。文中分别对DNA光生物传感器和DNA压电晶体生物传感器的基本原理、特点、研究进展及存在的问题进行了分析与说明。进而,对我国DNA生物传感器研究存在的差距和发展前景进行了简要论述。  相似文献   

8.
近几年来,酶传感器、免疫传感器及微生物传感器等发展较为成熟,而DNA生物传感器的研究相对较少。文章从核酸杂交的原理出发介绍了DNA生物传感器的工作原理,举例说明了电化学、光学和声学等几种典型的DNA生物传感器,指出了其固有的优缺点,肯定了DNA传感器发展前景。  相似文献   

9.
环介导等温扩增(loop-mediated isothermal amplification,LAMP)具有快速、等温、特异性高、操作简单等特点,因而近年来基于LAMP原理的生物传感器被广泛开发利用。基于此,对LAMP进行了基本介绍,包括引物设计原理、扩增体系组成及作用、具体扩增过程以及优缺点。然后,重点介绍了基于LAMP的比色生物传感器、荧光生物传感器、电化学生物传感器以及其他种类的生物传感器,并对各类生物传感器的特点进行了总结、比较。最后,剖析了LAMP生物传感器目前的不足,并对其发展方向做出展望,以期为今后研发低成本、高灵敏度、自动化、微型化的LAMP生物传感器提供参考。  相似文献   

10.
纳米颗粒增强酶生物传感器性能的研究进展   总被引:8,自引:0,他引:8  
简要介绍生物传感器的原理及分类,并且对纳米颗粒增强酶生物传感器的研究现状进行了评述,尤其是纳米颗粒对葡萄糖生物传感器和尿酸酶生物传感器的增强作用,并对我国生物传感器的发展方向做了展望。  相似文献   

11.
This paper reports the application of differential phase surface plasmon resonance (SPR) imaging in two-dimensional (2D) protein biosensor arrays. Our phase imaging approach offers a distinct advantage over the conventional angular SPR technique in terms of utilization efficiency of optical sensor elements in the imaging device. In the angular approach, each biosensor site in the biosensor array requires a linear array of optical detector elements to locate the SPR angular dip. The maximum biosensor density that a two-dimensional imaging device can offer is a one-dimensional SPR biosensor array. On the other hand, the phase-sensitive SPR approach captures data in the time domain instead of the spatial domain. It is possible that each pixel in the captured interferogram represents one sensor site, thus offering high-density two-dimensional biosensor arrays. In addition, our differential phase approach improves detection resolution through removing common-mode disturbances. Experimental results demonstrate a system resolution of 8.8 x 10(-7)RIU (refractive index unit). Real-time monitoring of bovine serum albumin (BSA)/anti-BSA binding interactions at various concentration levels was achieved using a biosensor array. The detection limit was 0.77 microg/ml. The reported two-dimensional SPR biosensor array offers a real-time and non-labeling detection tool for high-throughput protein array analysis. It may find promising applications in protein therapeutics, drug screening and clinical diagnostics.  相似文献   

12.
A cell array biosensor for environmental toxicity analysis   总被引:1,自引:0,他引:1  
In this study, a cell-based array technology that uses recombinant bioluminescent bacteria to detect and classify environmental toxicity has been implemented to develop two biosensor arrays, i.e., a chip and a plate array. Twenty recombinant bioluminescent bacteria, having different promoters fused with the bacterial lux genes, were immobilized within LB-agar. About 2 microl of the cell-agar mixture was deposited into the wells of either a cell chip or a 384-well plate. The bioluminescence (BL) from the cell arrays was measured with the use of highly sensitive cooled CCD camera that measured the bioluminescent signal from the immobilized cells and then quantified the pixel density using image analysis software. The responses from the cell arrays were characterized using three chemicals that cause either superoxide damage (paraquat), DNA damage (mitomycin C) or protein/membrane damage (salicylic acid). The responses were found to be dependent upon the promoter fused upstream of the lux operon within each strain. Therefore, a sample's toxicity can be analyzed and classified through the changes in the BL expression from each well. Moreover, a time of only 2 h was needed for analysis, making either of these arrays a fast, portable and economical high-throughput biosensor system for detecting environmental toxicities.  相似文献   

13.
Yuk JS  Jung SH  Jung JW  Hong DG  Han JA  Kim YM  Ha KS 《Proteomics》2004,4(11):3468-3476
We have investigated whether surface plasmon resonance (SPR) sensors based on the wavelength interrogation are able to analyze protein interactions on protein arrays. The spectral SPR sensor was self-constructed and its detection limit, expressed as the minimal refractive index variation, was calculated to be 6.6x10(-5) with the signal fluctuation of 1.0x10(-5). The protein array surface was modified by a mixed thiol monolayer to immobilize proteins. Protein arrays were analyzed by the line-scanning mode of the SPR sensor, which scanned every 100 microm along the central line of array spots and the scanned results were presented by color spectra from blue to red. Glutathione S-transferase (GST)-rac1 caused a concentration-dependent increase of SPR wavelength shift on protein arrays. The surface structure of the protein arrays was analyzed by atomic force microscopy. Specific interactions of antigens with antibodies were analyzed on the protein arrays by using three antibodies and eight proteins. These results suggest that the wavelength interrogation-based SPR sensor can be used as the biosensor for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

14.
A novel amperometric biosensor based on polypyrrole (PPy) nanotube array deposited on a Pt plated nano-porous alumina substrate and its performances are described. Glucose oxidase (GOx) enzyme was selected as the model enzyme in this study. Commercially available nano-porous alumina discs were used to fabricate electrodes in order to study the feasibility of enzyme entrapment by physical adsorption. A PPy/PF6- film comprising of nanotube array was synthesized using a solution containing 0.05 M Pyrrole and 0.1 M NaPF6 at a current density of 0.3 mA/cm2 for 90 s. The immobilization was done by physical adsorption of 5 microL of GOx (from a stock solution of 2 mg/mL of 210 U/mg) on each electrode. A sensitivity of 7.4 mA cm(-2) M(-1) was observed with PPy nanotube array where the maximum tube diameter was 100 nm. A linear range of 500 microM-13 mM and a response time of about 3 s were observed with a nanotube array where the maximum tube diameter was 200 nm. The synthesized nanotube arrays were characterized by galvanostatic electrochemical technique. Calculated value of apparent Michaelis-Menten constant (Km) was 7.01 mM. The use of nano-porous template electrodes leads to an efficient enzyme loading and provides an increased surface area for sensing the reaction. These factors contribute to increase the characteristic performances of the novel biosensor.  相似文献   

15.
Organophosphate pesticides present serious risks to human and environmental health. A rapid reliable, economical and portable analytical system will be of great benefit in the detection and prevention of contamination. A biosensor array based on six acetylcholinesterase enzymes for use in a novel automated instrument incorporating a neural network program is described. Electrochemical analysis was carried out using chronoamperometry and the measurement was taken 10s after applying a potential of 0 V vs. Ag/AgCl. The total analysis time for the complete assay was less than 6 min. The array was used to produce calibration data with six organophosphate pesticides (OPs) in the concentration range of 10(-5) M to 10(-9) M to train a neural network. The output of the neural network was subsequently evaluated using different sample matrices. There were no detrimental matrix effects observed from water, phosphate buffer, food or vegetable extracts. Furthermore, the sensor system was not detrimentally affected by the contents of water samples taken from each stage of the water treatment process. The biosensor system successfully identified and quantified all samples where an OP was present in water, food and vegetable extracts containing different OPs. There were no false positives or false negatives observed during the evaluation of the analytical system. The biosensor arrays and automated instrument were evaluated in situ in field experiments where the instrument was successfully applied to the analysis of a range of environmental samples. It is envisaged that the analytical system could provide a rapid detection system for the early warning of contamination in water and food.  相似文献   

16.
Allosteric ribozymes (aptazymes) can transduce the noncovalent recognition of analytes into the catalytic generation of readily observable signals. Aptazymes are easily engineered, can detect diverse classes of biologically relevant molecules, and have high signal-to-noise ratios. These features make aptazymes useful candidates for incorporation into biosensor arrays. Allosteric ribozyme ligases that can recognize a variety of analytes ranging from small organics to proteins have been generated. Upon incorporation into an array format, multiple different aptazyme ligases were able to simultaneously detect their cognate analytes with high specificity. Analyte concentrations could be accurately measured into the nanomolar range. The fact that analytes induced the formation of new covalent bonds in aptazyme ligases (as opposed to noncovalent bonds in antibodies) potentiated stringent washing of the array, leading to improved signal-to-noise ratios and limits of detection.  相似文献   

17.
微悬臂列阵传感器在生物检测方面具有快速、痕量和非标记的特性. 我们以镀金并在其上固定了 DNA 探针的微悬臂为正极,在靶杂交液槽内引入另一电极作为负极,构成电场驱动微悬臂 DNA 生物传感器. 对该传感器系统施加静电场,驱动 DNA 分子朝正极迁移,使溶液中的 DNA 分子富集在微悬臂上,促进 DNA 分子的杂交. 结果表明: a. DNA 在微悬臂上的杂交时间仅需 3 min,加快了微悬臂生物传感器对 DNA 分子的检测速度; b. 提高了微悬臂生物传感器的灵敏度,可以检测到皮克级的 DNA 分子.  相似文献   

18.
A ProteOn XPR36 parallel array biosensor was used to characterize the binding kinetics of a set of small molecule/enzyme interactions. Using one injection with the ProteOn's crisscrossing flow path system, we collected response data for six different concentrations of each analyte over six different target protein surfaces. This "one-shot" approach to kinetic analysis significantly improves throughput while generating high-quality data even for low-molecular-mass analytes. We found that the affinities determined for nine sulfonamide-based inhibitors of the enzyme carbonic anhydrase II were highly correlated with the values determined using isothermal titration calorimetry. We also measured the temperature dependence (from 15 to 35 degrees C) of the kinetics for four of the inhibitor/enzyme interactions. Our results illustrate the potential of this new parallel-processing biosensor to increase the speed of kinetic analysis in drug discovery and expand the applications of real-time protein interaction arrays.  相似文献   

19.
In this article we demonstrate a versatile method for the generation of patterned protein films by encapsulation in arrays of the lipids, octadecylamine (ODA, cationic), and arachidic acid (AA, anionic). A simple 2 x 2 array of ODA and AA was vacuum deposited on different substrates using appropriate masks. Thereafter, the enzymes pepsin and fungal protease as well as the heme-proteins cytochrome c and hemoglobin were encapsulated in the different elements of the array by sequential immersion (combined with judicious masking) of the array elements in the different protein solutions. The proteins are incorporated into the lipid elements by electrostatic interaction between charged amino acid residues on the protein surface and charged functional groups in the lipid matrix. This procedure leads to spatially distinct regions of the different proteins on one substrate and shows promise for single-chip multianalyte immunoassay/multiplex, high-throughput biosensor and catalysis applications. Fourier transform infrared spectroscopy (FTIR) was used to monitor the incorporation of the proteins in the different elements of the array as well as to ascertain whether intermixing of the proteins in a particular array element had occurred. The heme-protein composite regions were further characterized using UV-VIS spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号