首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The adenovirus mutant Ad2ts111 has been previously shown to contain a mutation in the early region 2A gene encoding the single-stranded-DNA-binding protein that results in thermolabile replication of virus DNA and a mutation in early region 1 that causes degradation of intracellular DNA. A recombinant virus, Ad2cyt106, has been constructed which contains the Ad2ts111 early region 1 mutation and the wild-type early region 2A gene from adenovirus 5. This virus, like its parent Ad2ts111, has two temperature-independent phenotypes; first, it has the ability to cause an enhanced and unusual cytopathic effect on the host cell (cytocidal [cyt] phenotype) and second, it induces degradation of cell DNA (DNA degradation [deg] phenotype). The mutation responsible for these phenotypes is a single point mutation in the gene encoding the adenovirus early region 1B (E1B) 19,000-molecular-weight (19K) tumor antigen. This mutation causes a change from a serine to an asparagine in the 20th amino acid from the amino terminus of the protein. Three other mutants that affect the E1B 19K protein function have been examined. The mutants Ad2lp5 and Ad5dl337 have both the cytocidal and DNA degradation phenotypes (cyt deg), whereas Ad2lp3 has only the cytocidal phenotype and does not induce degradation of cell DNA (cyt deg+). Thus, the DNA degradation is not caused by the altered cell morphology. Furthermore, the mutant Ad5dl337 does not make any detectable E1B 19K protein product, suggesting that the absence of E1B 19K protein function is responsible for the mutant phenotypes. A fully functional E1B 19K protein is not absolutely required for lytic growth of adenovirus 2 in HeLa cells, and its involvement in transformation of nonpermissive cells to morphological variants is discussed.  相似文献   

3.
In soluble protein extracts obtained from adenovirus productively infected cells, monoclonal antibodies directed against the early region 1B 58,000-dalton (E1B-58K) protein immunoprecipitated, in addition to this protein, a polypeptide of 25,000 molecular weight. An analysis of tryptic peptides derived from this 25K protein demonstrated that it was unrelated to the E1B-58K protein. The tryptic peptide maps of the 25K protein produced in adenovirus 5 (Ad5)-infected HeLa cells and BHK cells were identical, whereas Ad3-infected HeLa cells produced a different 25K protein. The viral origin of this 25K protein was confirmed by an amino acid sequence determination of five methionine residues in two Ad2 tryptic peptides derived from the 25K protein. The positions of these methionine residues in the 25K protein were compared with the nucleotide sequence of Ad2 and uniquely mapped the gene for this protein to early region 4, subregion 6 of the viral genome. A mutant of Ad5 was obtained (Ad5 dl342) which failed to produce detectable levels of the E1B-58K protein. In HeLa cells infected with this mutant, monoclonal antibodies directed against the E1B-58K protein failed to detect the associated 25K protein. In 293 cells infected with Ad5 dl342, which contain an E1B-58K protein encoded by the integrated adenovirus genome, the mutant produced an E4-25K protein which associated with the E1B-58K protein derived from the integrated genome. Extracts of labeled Ad5 dl342-infected HeLa cells (E1B-58K-) were mixed in vitro with extracts of unlabeled Ad5 wild type-infected HeLa cells or 293 cells (E1B-58K+). When the mixed extracts were incubated with the E1B-58K monoclonal antibody, a labeled E4-25K protein was coimmunoprecipitated. When extracts of Ad5 dl342-infected HeLa cells and uninfected HeLa cells (both E1B-58K-) were mixed, the E1B-58K monoclonal antibody failed to immunoselect the E4-25K protein. These data provide evidence that the E1B-58K antigen is physically associated with an E4-25K protein in productively infected cells. This is the same E1B-58K protein that was previously shown to be associated with the cellular p53 antigen in adenovirus-transformed cells.  相似文献   

4.
5.
An adenovirus type 5 mutant, designated H5ilE4I, was constructed in which region E4 was replaced by a cloned cDNA. The cDNA was a copy of an mRNA which exclusively contains open translational reading frames 6 and 7. The phenotype of the mutant was compared with that of the previously characterized E4 mutant H2dl808 and wild-type adenovirus 5. Although the H5ilE4I mutant lacked at least five E4 genes, it was nondefective for growth in HeLa cells. The defects in viral DNA replication, late protein synthesis, and shutoff of host cell protein synthesis associated with the phenotype of the H2dl808 mutant were not observed in HeLa cells infected with the H5ilE4I mutant. However, differences were observed regarding the time of onset of viral DNA replication and the accumulation of the hexon polypeptide as well as the 72-kilodalton adenovirus-specific DNA-binding protein. The results thus indicate that open reading frame 6 or 7 or both contain all genetic information required for viral replication in tissue culture cells, whereas another E4 gene modulates the accumulation of certain viral polypeptides. The early onset of viral DNA replication in H5ilE4I-infected cells may be an indirect effect of the enhanced expression of the 72-kilodalton DNA-binding protein.  相似文献   

6.
B Falgout  G Ketner 《Journal of virology》1987,61(12):3759-3768
H2dl807, a defective deletion mutant of human adenovirus type 2 lacking parts of early regions 3 and 4 and all of late region 5, was severely defective for virus particle assembly on HeLa cells, producing about 1% of the normal yield of particles. On Vero cells, H2dl807 produced only 5% as many particles as wild type, while on W162 cells, a Vero cell derivative which supports the growth of early region 4 mutants, H2dl807 produced nearly 40% of the wild-type level of particles. Two other defective deletion mutants, H2dl802 and H5dl1021, which lack parts of early region 3 and which are incapable of making fiber, the product of late region 5, were wild type for virus assembly. These data suggest that the cause of the assembly defect of H2dl807 is the lack of a diffusible early region 4 product. H2dl807-infected Vero cells accumulated nearly wild-type amounts of viral late proteins in the nucleus and cytoplasm. Thus, the defect of the mutant in assembly on Vero cells is not due to a general lack of late proteins. Finally, the fact that H2dl802 and H5dl1021 make wild-type amounts of virus particles suggests that fiber is not essential for adenovirus assembly.  相似文献   

7.
The adenovirus type 5 mutant dl1520 was engineered previously to be completely defective for E1B-55K functions. Recently, this mutant (also known as ONYX-015) has been suggested to replicate preferentially in p53(-) and some p53(+) tumor cell lines but to be attenuated in primary cultured cells (C. Heise, A. Sampson-Johannes, A. Williams, F. McCormick, D. D. F. Hoff, and D. H. Kirn, Nat. Med. 3:639-645, 1997). It has been suggested that dl1520 might be used as a "magic bullet" that could selectively lyse tumor cells without harm to normal tissues. However, we report here that dl1520 replication is independent of p53 genotype and occurs efficiently in some primary cultured human cells, indicating that the mutant virus does not possess a tumor selectivity. Although it was not the sole host range determinant, p53 function did reduce dl1520 replication when analyzed in a cell line expressing temperature-sensitive p53 (H1299-tsp53) (K. L. Fries, W. E. Miller, and N. Raab-Traub, J. Virol. 70:8653-8659, 1996). As found earlier for other E1B-55K mutants in HeLa cells (Y. Ho, R. Galos, and J. Williams, Virology 122:109-124, 1982), dl1520 replication was temperature dependent in H1299 cells. When p53 function was restored at low temperature in H1299-tsp53 cells, it imposed a modest defect in viral DNA replication and accumulation of late viral cytoplasmic mRNA. However, in both H1299 and H1299-tsp53 cells, the defect in late viral protein synthesis appeared to be much greater than could be accounted for by the modest defects in late viral mRNA levels. We therefore propose that in addition to countering p53 function and modulating viral and cellular mRNA nuclear transport, E1B-55K also stimulates late viral mRNA translation.  相似文献   

8.
A function involved in the inhibition of DNA degradation has been assigned through complementation tests to a product of region E1b of the adenovirus genome (between 4.5 and 10.5 map units). DNA degradation induced by the adenovirus type 12 (Ad12) cyt mutant H12cyt70 and the Ad5 early deletion mutant dl313 (with the deletion between 3.5 and 10.7 map units) was inhibited by coinfection with Ad5 region E1a (between 0 and 4.5 map units) mutants dl312 and hr1 and region E1b mutant hr6. The defect of inhibition of DNA degradation in Ad5 dl313 was also complemented in 293 cells. This DNase-inhibitory function does not appear to involve polypeptide IX or the 58,000-dalton polypeptide. Wild-type Ad12 induced DNA degradation in hamster embryo cells, suggesting that the DNase-inhibitory function is not expressed in these nonpermissive cells. Additional evidence suggests the involvement of a second viral product which positively influences the DNase activity and which appears to be an early function.  相似文献   

9.
10.
An E1B 58K mutant of adenovirus type 12 (Ad12), dl207, was constructed by the deletion of 852 base pairs in the E1B 58K coding region. The mutant could grow efficiently in 293E1 cells but not in HeLa, KB, or human embryo kidney (HEK) cells. Viral DNA replication of dl207 was not detected in HeLa and KB cells and was seldom detected in HEK cells. Analysis of viral DNA synthesis in vitro showed that the Ad12-DNA-protein complex replicated by using the nuclear extract from Ad12 wild-type (WT)-infected HeLa cells but not by using the nuclear extract from dl207-infected cells. In dl207-infected HeLa and KB cells, early mRNAs were detected, but late mRNAs were not detected. The mutant induced fewer transformed foci than the WT in rat 3Y1 cells. Cells transformed by dl207 could grow efficiently in fluid medium, form colonies in soft agar culture, and induce tumors in rats transplanted with the transformed cells at the same efficiency as WT-transformed cells. Tumors were induced in hamsters injected with WT virions but were not induced in hamsters injected with dl207 virions. The results indicate that the E1B 58K protein is required both for viral DNA replication in productive infection and for initiation of cell transformation, but not for maintenance of the transformed phenotype.  相似文献   

11.
Species C human adenovirus mutants that fail to express open reading frame 3 of early region 4 (E4orf3) are phenotypically indistinguishable from the wild-type virus when evaluated in cells cultured in vitro. However, E4orf3 gene function has been productively studied in the context of additional viral mutations. This study identifies diverse roles for the E4orf3 protein that are evident in the absence of early region 1B 55-kDa protein (E1B-55K) function. In an E1B-55K-deficient background, the E4orf3 protein promotes viral replication by increasing both the burst size and the probability that an infected cell will produce virus. Early viral gene expression is not impaired in E1B-55K/E4orf3 double mutant virus-infected cells. Cells infected with the double mutant virus accumulated concatemers of viral DNA. However, the E1B-55K/E4orf3 double mutant virus did not replicate any better in MO59J cells, in which viral DNA concatemers did not accumulate, than in MO59K cells, in which viral DNA concatemers were produced, suggesting that viral DNA concatenation is not the primary growth defect of the E1B-55K/E4orf3 double mutant virus. Accumulation of viral mRNA in the nucleus and cytoplasm of E1B-55K/E4orf3 double mutant virus-infected cells was severely reduced compared to that on wild-type virus-infected cells. Thus, in an E1B-55K mutant background, the E4orf3 protein promotes the accumulation of late viral RNA and enhances late gene expression. Finally, within the context of an E1B-55K mutant virus, the E4orf3 protein acts to suppress host cell translation and preserve the viability of cells at moderately late times of infection.  相似文献   

12.
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.  相似文献   

13.
The E1B 55-kDa oncoprotein of adenovirus enables the virus to overcome restrictions imposed on viral replication by the cell cycle. Approximately 20% of HeLa cells infected with an E1B 55-kDa mutant adenovirus produced virus when evaluated by electron microscopy or by assays for infectious centers. By contrast, all HeLa cells infected with a wild-type adenovirus produced virus. The yield of E1B mutant virus from randomly cycling HeLa cells correlated with the fraction of cells in S phase at the time of infection. In synchronously growing HeLa cells, approximately 75% of the cells infected during S phase with the E1B mutant virus produced virus, whereas only 10% of the cells infected during G1 produced virus. The yield of E1B mutant virus from HeLa cells infected during S phase was sevenfold greater than that of cells infected during G1 and threefold greater than that of cells infected during asynchronous growth. Cells infected during S phase with the E1B mutant virus exhibited severe cytopathic effects, whereas cells infected with the E1B mutant virus during G1 exhibited a mild cytopathic effect. Viral DNA synthesis appeared independent of the cell cycle because equivalent amounts of viral DNA were synthesized in cells infected with either wild-type or E1B mutant virus. The inability of the E1B mutant virus to replicate was not mediated by the status of p53. These results define a novel property of the large tumor antigen of adenovirus in relieving growth restrictions imposed on viral replication by the cell cycle.  相似文献   

14.
15.
A total of 59 cytocidal (cyt) mutants were isolated from adenovirus 2 (Ad2) and Ad5. In contrast to the small plaques and adenovirus type of cytopathic effects produced by wild-type cyt+ viruses, the cyt mutants produced large plaques, and the cytopathic effect was characterized by marked cellular destruction. cyt mutants were transformation defective in established rat 3Y1 cells. cyt+ revertants and cyt+ intragenic recombinants recovered fully the transforming ability of wild-type viruses. Thus, the cyt gene is an oncogene responsible for the transforming function of Ad2 and Ad5. Genetic mapping in which we used three Ad5 deletion mutants (dl312, dl313, and dl314) as reference deletions located the cyt gene between the 3' ends of the dl314 deletion (nucleotide 1,679) and the dl313 deletion (nucleotide 3,625) in region E1B. Restriction endonuclease mapping of these recombinants suggested that the cyt gene encodes the region E1B 19,000-molecular-weight (175R) polypeptide (nucleotides 1,711 to 2,236). This was confirmed by DNA sequencing of eight different cyt mutants. One of these mutants has a single missense mutant, two mutants have double missense mutations, and five mutants have nonsense mutations. Except for one mutant, these point mutations are not located in any other known region E1B gene. We conclude that the cyt gene codes for the E1B 19,000-molecular-weight (175R) polypeptide, that this polypeptide is required for morphological transformation of rat 3Y1 cells, and that simple amino acid substitutions in the protein can be sufficient to produce the cyt phenotype.  相似文献   

16.
The newly constructed adenovirus type 5 mutant in1 carries a single AT base pair insertion immediately after nucleotide position 1715 in the E1B gene sequence which destroys the proximal AUG normally present in E1B messages and prevents production of intact E1B 19-kDa protein in infected cells. We have used in1, variants of in1 containing mutant alleles of viral genes known to enhance transformation frequency, and adenovirus type 5 mutant dl337 (S. Pilder, J. Logan, and T. Shenk, J. Virol. 52:664-671, 1984), in which the sequence between nucleotides 1770 and 1916 within the 19-kDa reading frame is deleted, to test the generally accepted hypothesis that this E1B protein is essential for the transformation of rodent cells and maintenance of the transformed phenotype. We find that these mutants transform rat embryo cells, rat kidney and mouse kidney primary cells, and cells of the 3Y1 rat line with decreased frequencies only when virus is added to these various cells at high input multiplicities of infection. In contrast, when lower doses of virus are used, the mutants transform with wild-type frequencies. Cells infected with higher doses of mutant virus show increased levels of DNA degradation and cell killing compared with those of cells infected with the same levels of wild-type virus, and these effects most likely contribute to the decreased transformation frequencies observed. On the basis of these results and the results of phenotypic analyses of numerous transformants, we propose that the E1B 19-kDa protein is not required for induction and/or maintenance of transformed-cell characteristics in rodent cells infected with adenovirus type 5.  相似文献   

17.
The E1B-55K protein plays an important role during human adenovirus type 5 productive infection. In the early phase of the viral infection, E1B-55K binds to and inactivates the tumor suppressor protein p53, allowing efficient replication of the virus. During the late phase of infection, E1B-55K is required for efficient nucleocytoplasmic transport and translation of late viral mRNAs, as well as for host cell shutoff. In an effort to separate the p53 binding and inactivation function and the late functions of the E1B-55K protein, we have generated 26 single-amino-acid mutations in the E1B-55K protein. These mutants were characterized for their ability to modulate the p53 level, interact with the E4orf6 protein, mediate viral late-gene expression, and support virus replication in human cancer cells. Of the 26 mutants, 24 can mediate p53 degradation as efficiently as the wild-type protein. Two mutants, R240A (ONYX-051) and H260A (ONYX-053), failed to degrade p53 in the infected cells. In vitro binding assays indicated that R240A and H260A bound p53 poorly compared to the wild-type protein. When interaction with another viral protein, E4orf6, was examined, H260A significantly lost its ability to bind E4orf6, while R240A was fully functional in this interaction. Another mutant, T255A, lost the ability to bind E4orf6, but unexpectedly, viral late-gene expression was not affected. This raised the possibility that the interaction between E1B-55K and E4orf6 was not required for efficient viral mRNA transport. Both R240A and H260A have retained, at least partially, the late functions of wild-type E1B-55K, as determined by the expression of viral late proteins, host cell shutoff, and lack of a cold-sensitive phenotype. Virus expressing R240A (ONYX-051) replicated very efficiently in human cancer cells, while virus expressing H260A (ONYX-053) was attenuated compared to wild-type virus dl309 but was more active than ONYX-015. The ability to separate the p53-inactivation activity and the late functions of E1B-55K raises the possibility of generating adenovirus variants that retain the tumor selectivity of ONYX-015 but can replicate more efficiently than ONYX-015 in a broad spectrum of cell types.  相似文献   

18.
A genetic system is described which allows the isolation and propagation of adenovirus mutants containing lesions in early region 2A (E2A), the gene encoding the multifunctional adenovirus DNA-binding protein (DBP). A cloned E2A gene was first mutagenized in vitro and then was introduced into the viral genome by in vivo recombination. The E2A mutants were propagated by growth in human cell lines which express an integrated copy of the DBP gene under the control of a dexamethasone-inducible promoter (D. F. Klessig, D. E. Brough, and V. Cleghon, Mol. Cell. Biol. 4:1354-1362, 1984). The protocol was used to construct five adenovirus mutants, Ad5d1801 through Ad5d1805, which contained deletions in E2A. One of the mutants, Ad5d1802, made no detectable DBP and thus represents the first DBP-negative adenovirus mutant, while the four other mutants made truncated DBP-related polypeptides. All five mutants were completely defective for growth and plaque formation on HeLa cell monolayers. Furthermore, the two mutants which were tested, Ad5d1801 and Ad5d1802, did not replicate their DNA in HeLa cells. The mutant Ad5d1804 encoded a truncated DBP-related protein which contained an entire amino-terminal domain derived from the host range mutant Ad5hr404, a variant of Ad5 which multiplies efficiently in monkey cells. While results of a previous study suggest that the amino-terminal domain of DBP could act independently of the carboxyl-terminal domain to enhance late gene expression in monkey cells, the Ad5d1804 polypeptide failed to relieve the block to late viral protein synthesis in monkey cells. The mutant Ad5d1802 was used to study the role of DBP in the regulation of early adenovirus gene expression in infected HeLa cells. These experiments show that E2A mRNA levels are consistently reduced approximately fivefold in Ad5d1802-infected cells, suggesting either a role for DBP in the expression of its own gene or a cis-acting defect caused by the E2A deletion. DBP does not appear to play a significant role in the regulation of adenovirus early regions 1A, 1B, 3, or 4 mRNA levels in infected HeLa cell monolayers since wild-type Ad5- and Ad5d1802-infected cells showed very little difference in the patterns of expression of these genes.  相似文献   

19.
The ability of the adenovirus type 5 E1B 55-kDa mutants dl1520 and dl338 to replicate efficiently and independently of the cell cycle, to synthesis viral DNA, and to lyse infected cells did not correlate with the status of p53 in seven cell lines examined. Rather, cell cycle-independent replication and virus-induced cell killing correlated with permissivity to viral replication. This correlation extended to S-phase HeLa cells, which were more susceptible to virus-induced cell killing by the E1B 55-kDa mutant virus than HeLa cells infected during G1. Wild-type p53 had only a modest effect on E1B mutant virus yields in H1299 cells expressing a temperature-sensitive p53 allele. The defect in E1B 55-kDa mutant virus replication resulting from reduced temperature was as much as 10-fold greater than the defect due to p53 function. At 39°C, the E1B 55-kDa mutant viruses produced wild-type yields of virus and replicated independently of the cell cycle. In addition, the E1B 55-kDa mutant viruses directed the synthesis of late viral proteins to levels equivalent to the wild-type virus level at 39°C. We have previously shown that the defect in mutant virus replication can also be overcome by infecting HeLa cells during S phase. Taken together, these results indicate that the capacity of the E1B 55-kDa mutant virus to replicate independently of the cell cycle does not correlate with the status of p53 but is determined by yet unidentified mechanisms. The cold-sensitive nature of the defect of the E1B 55-kDa mutant virus in both late gene expression and cell cycle-independent replication leads us to speculate that these functions of the E1B 55-kDa protein may be linked.  相似文献   

20.
S K Chiou  C C Tseng  L Rao    E White 《Journal of virology》1994,68(10):6553-6566
Expression of the adenovirus E1A oncogene induces apoptosis which impedes both the transformation of primary rodent cells and productive adenovirus infection of human cells. Coexpression of E1A with the E1B 19,000-molecular-weight protein (19K protein) or the Bcl-2 protein, both of which have antiapoptotic activity, is necessary for efficient transformation. Induction of apoptosis by E1A in rodent cells is mediated by the p53 tumor suppressor gene, and both the E1B 19K protein and the Bcl-2 protein can overcome this p53-dependent apoptosis. The functional similarity between Bcl-2 and the E1B 19K protein suggested that they may act by similar mechanisms and that Bcl-2 may complement the requirement for E1B 19K expression during productive infection. Infection of human HeLa cells with E1B 19K loss-of-function mutant adenovirus produces apoptosis characterized by enhanced cytopathic effects (cyt phenotype) and degradation of host cell chromosomal DNA and viral DNA (deg phenotype). Failure to inhibit apoptosis results in premature host cell death, which impairs virus yield. HeLa cells express extremely low levels of p53 because of expression of human papillomavirus E6 protein. Levels of p53 were substantially increased by E1A expression during adenovirus infection. Therefore, E1A may induce apoptosis by overriding the E6-induced degradation of p53 and promoting p53 accumulation. Stable Bcl-2 overexpression in HeLa cells infected with the E1B 19K- mutant adenovirus blocked the induction of the cyt and deg phenotypes. Expression of Bcl-2 in HeLa cells also conferred resistance to apoptosis mediated by tumor necrosis factor alpha and Fas antigen, which is also an established function of the E1B 19K protein. A comparison of the amino acid sequences of Bcl-2 family members and that of the E1B 19K protein indicated that there was limited amino acid sequence homology between the central conserved domains of E1B 19K and Bcl-2. This domain of the E1B 19K protein is important in transformation and regulation of apoptosis, as determined by mutational analysis. The limited sequence homology and functional equivalency provided further evidence that the Bcl-2 and E1B 19K proteins may possess related mechanisms of action and that the E1B 19K protein may be the adenovirus equivalent of the cellular Bcl-2 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号