首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation.

Methods

Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species'' dependence on pollinators.

Key Results

Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species'' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation.

Conclusions

The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species'' dependence on pollinators.  相似文献   

2.
Aims Floral traits are frequently used in traditional plant systematics because of their assumed constancy. One potential reason for the apparent constancy of flower size is that effective pollen transfer between flowers depends on the accuracy of the physical fit between the flower and pollinator. Therefore, flowers are likely to be under stronger stabilizing selection for uniform size than vegetative plant parts. Moreover, as predicted by the pollinator-mediated stabilizing selection (PMSS) hypothesis, an accurate fit between flowers and their pollinators is likely to be more important for specialized pollination systems as found in many species with bilaterally symmetric (zygomorphic) flowers than for species with radially symmetric (actinomorphic) flowers.Methods In a comparative study of 15 zygomorphic and 13 actinomorphic species in Switzerland, we tested whether variation in flower size, among and within individuals, is smaller than variation in leaf size and whether variation in flower size is smaller in zygomorphic compared to actinomorphic species.Important findings Indeed, variation in leaf length was significantly larger than variation in flower length and width. Within-individual variation in flower and leaf sizes did not differ significantly between zygomorphic and actinomorphic species. In line with the predictions of the PMSS, among-individual variation in flower length and flower width was significantly smaller for zygomorphic species than for actinomorphic species, while the two groups did not differ in leaf length variation. This suggests that plants with zygomorphic flowers have undergone stronger selection for uniform flowers than plants with actinomorphic flowers. This supports that the relative uniformity of flowers compared to vegetative structures within species, as already observed in traditional plant systematics, is, at least in part, a consequence of the requirement for effective pollination.  相似文献   

3.
《植物生态学报》2014,38(5):460
植物花对称性与传粉系统密切相关, 花特征的变异性受到传粉者的选择作用。由于特化的传粉者对两侧对称的花的稳定选择, Berg假说认为两侧对称植物花大小的变异性比辐射对称植物的更低; 而且, 在传粉者的选择作用下花特征比植物营养特征明显有更低的变异性, 因为后者更易受环境影响。该文对青藏高原东部高山草甸植物群落的50种开花植物(包括19种两侧对称植物和31种辐射对称植物)的花和叶特征进行了测定和分析。结果表明不论是两侧对称植物还是辐射对称植物, 花大小的变异性都显著低于叶片大小的变异性, 表明传粉者对花施加的稳定选择有利于花的稳定性。但是, 辐射对称物种花大小的变异程度和两侧对称物种的相似, 即使在控制物种系统发育的影响后, 也没有发现显著的差异, 这与Berg假说不一致。高山生态系统中传粉者种类相对较少, 以熊蜂和蝇类为主, 传粉者的活动受局域气候环境影响较大, 因此传粉昆虫对植物花的选择作用强度可能有较大的变异性。  相似文献   

4.
A central question in plant evolutionary ecology is how mixed mating systems are maintained in the face of selection against self-pollination. Recently, attention has focused on the potential reproductive assurance (RA) benefit of selfing: the ability to produce seeds via autonomous selfing when the potential for outcrossing is reduced or absent. To date, there is little experimental support for this benefit under natural pollination conditions. In addition, the RA hypothesis has not been tested experimentally in a species displaying morphological variation for traits expected to influence the mating system, such as flower size, which affects both attractiveness to pollinators and ability to self autonomously. Here, we document significant among-population variation in flower size in Collinsia parviflora and show that pollinators preferred large flowers over small flowers in experimental arrays. The pollinator community varied among three study sites, and two small-flowered populations had lower pollinator visitation rates than one large-flowered population. We compared seed production between intact flowers (can self) and experimentally emasculated flowers (require a pollinator) on large- and small-flowered plants. As predicted by the RA hypothesis, small-flowered plants show a greater RA benefit of selfing than large-flowered plants; emasculated, small flowers produced very few seeds, relative to intact, small flowers or either emasculated or intact, large flowers. We also show that the RA benefit is pollination-context dependent, differing between small- and large-flowered test sites, likely due to a combination of pollinator discrimination against small flowers and differences between test sites in the pollinator community. This paper is the first experimental evidence showing a trait-dependent RA benefit of selfing under natural pollination conditions.  相似文献   

5.
The degree to which fine‐scaled variation in floral symmetry is associated with variation in plant fitness remains unresolved, as does the question of whether floral symmetry is in itself a target of pollinator‐mediated selection. Geranium robertianum (Geraniaceae) is a broadly distributed species whose five‐petaled flowers vary widely with respect to their degree of rotational asymmetry. In this study, we used a naturally occurring population of plants to investigate whether floral rotational asymmetry and leaf bilateral symmetry were phenotypically correlated with a series of fitness‐related traits, and also used an experimental array with model flowers to investigate the preference of insect visitors for varying degrees of floral size and symmetry. We found that leaf asymmetry was not associated with any of the phenotypic traits measured, and that the degree of floral rotational asymmetry was strongly associated with decreased flower size and decreased pollen production. Our experimental arrays showed that insect visitors did not discriminate among model flowers on the basis of size or symmetry alone; however, insect visitors preferentially visited smaller, symmetric model flowers over larger, severely asymmetric model flowers. Taken together, our results suggest that floral and leaf symmetry in G. robertianum are not likely strong indicators of phenotypic quality, and that floral symmetry is unlikely to be a target of pollinator‐mediated selection. However, the relationship between floral asymmetry and pollen production may provide a role for fecundity selection on symmetry in this species. These data importantly add to the growing literature on the adaptive nature of floral symmetry in the wild.  相似文献   

6.
Insect preference for symmetrical artificial flowers   总被引:5,自引:0,他引:5  
A. P. Møller  G. Sorci 《Oecologia》1998,114(1):37-42
An insect preference for floral symmetry may be maintained because plants with symmetrical flowers, which are able to control developmental processes under given environmental conditions, also are able to provide more pollinator rewards than plants with asymmetrical flowers. Alternatively, insects may have an inherent preference for symmetrical structures and thereby impose selection for the maintenance of symmetry in flowers even in the absence of any pollinator rewards. We tested for an insect preference for radially symmetrical flowers by using horizontally placed units of four circular coloured flower models varying in size and symmetry. The shape and colour of the model flowers did not resemble any naturally occurring flowers in the environment. Insects and Hymenoptera, respectively (five species of Diptera and one species of Coleoptera) that visited the flower models clearly preferred symmetrical models over asymmetrical ones, and the ranking of visits to the models reflected a preference for large, symmetrical flowers. These results provide evidence for a preference for symmetrical flower models, even in the absence of pollinator rewards. Received: 11 September 1997 / Accepted: 2 November 1997  相似文献   

7.
Flower size and number usually evolve under pollinator‐mediated selection. However, hot, dry environments can also modulate display, counteracting pollinator attraction. Increased pollen deposition on larger flower displays may not involve higher female fitness. Consequently, stressful conditions may constrain flower size, favouring smaller‐sized flowers. The large‐flowered, self‐incompatible Mediterranean shrub Cistus ladanifer was used to test that: (1) this species suffers pollen limitation; (2) pollinators are spatially–temporally variable and differentially visit plants with more/larger flowers; (3) increased visits enhance reproduction under pollen limitation; (4) stressful conditions reduce female fitness of larger displays; and (5) phenotypic selection on floral display is not just pollinator‐mediated. We evaluated pollen limitation, related floral display to pollinator visits and fruit and seed production and estimated phenotypic selection. Flower size was 7.2–10.5 cm and varied spatially–temporally. Visitation rates (total visits/50 min) ranged from 0.26 to 0.43 and increased with flower size. Fruit set averaged 80% and seed number averaged 855, but only fruit set varied between populations and years. Selection towards larger flowers was detected under conditions of pollen limitation. Otherwise, we detected stabilizing selection on flower size and negative selection on flower number. Our results suggest that selection on floral display is not only pollinator‐dependent through female fitness in C. ladanifer. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 540–555.  相似文献   

8.
We compared the amount of variation in flower size between autogamous and insect-pollinated species to examine the hypothesis that pollinator-mediated selection stabilizes flower size in plant populations. One would expect the flower size variation to be larger in selfing species that are less affected by pollinator-mediated stabilizing selection than in insect-pollinated species. The results of phylogenetic comparisons between autogamous and insect-pollinated flowers supported the pollinator-mediated stabilizing selection hypothesis, although the non-phylogenetic comparison did not. According to our results, we discuss the factors influencing the flower size variation.  相似文献   

9.
We investigated patterns of flower‐size variation along altitudinal gradients in the bee‐pollinated perennial Campanula rotundifolia (Campanulaceae) by examining 22 Norwegian populations at altitudes between 240 and 1100 m a.s.l. We explored potential mechanisms for the underlying pattern by quantifying pollinator–faunal composition, pollinator‐visitation rates and pollen limitation of seed set in subsets of the study populations. Despite a decrease in plant size, several measures of flower size increased with elevation. Bumble bees were the main pollinators at both alpine and lowland sites in the study area. However, species composition of the pollinator fauna differed, and pollinators were larger in higher‐elevation than in lower‐elevation sites. Pollinator visitation rates were lower at higher‐elevations than at lower elevations. Pollen limitation of seed set did not vary significantly with altitude. Our results are consistent with differences in bumble‐bee size and visitation rates as causal mechanisms for the relatively larger flowers at higher elevations, in three non‐mutually exclusive ways: 1) Larger flowers reflect selection for increased attractiveness where pollinators are rare. 2) Larger and fewer flowers represent a risk avoidance strategy where the probability of pollination is low on any given day. 3) Flower size variation reflects selection to improve the fit of pollinators with fertile structures by matching flower size to pollinator size across sites.  相似文献   

10.
This study explores the association between variation in pollinator type and flower size in Macromeria viridiflora (Boraginaceae) by studying the breeding system of the plant and the pollinator effectiveness of floral visitors. Studies were conducted at two sites where plants differ in flower size and floral visitors. Breeding system studies showed that while plants are self-compatible and occasionally produce seed autogamously, pollinators are important for reproductive success in the plants. However, plants are not pollinator-limited at these sites. Combining visitation rate and pollen deposition as measures of pollinator effectiveness, I found hummingbirds to be the most effective pollinators at both sites. Although hawkmoths also pollinate the flowers, they visit the flowers less frequently and, at one of the two sites, deposit less pollen. These results are consistent with the hypothesis that geographic variation in corolla size is the result of selection by different hummingbird species.  相似文献   

11.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

12.
Floral display (the size, number, and arrangement of open flowers) influences pollinator visitation to animal-pollinated plants and should be an important determinant of reproductive success. We examined variation in the size and number of open flowers in wild daffodils (Narcissus). Our analysis of published data on 45 taxa showed that flower number varied negatively with flower diameter among Narcissus species, which supports the widespread assumption that there is a trade-off between these traits. In contrast, field measurements indicated a positive relation between flower number and diameter within two populations of Narcissus dubius, and no relation was evident after we controlled for variation in bulb size. The discrepancy between inter- and intraspecific patterns may have occurred because variable resource levels obscure trade-offs when variation in flower size is low (e.g., within species). Size-related increases in floral tube length were half as great as corresponding increases in flower diameter, a result that is consistent with stronger stabilizing selection on tube length. Staggered flowering within N. dubius inflorescences limited the mean number of open flowers to <66% of total flower number, and slow expansion by later opening flowers resulted in significant differences in flower size throughout flowering. Although pollinators preferred large flowers, experimental reductions in flower diameter did not affect seed production. Our results illustrate how the relative importance of the factors influencing floral display can vary among levels of biological organization. Interspecific variation in flower size and number appeared to be constrained by allocation trade-offs, but intraspecific variation in both traits was more greatly influenced by plant resource status. Within plants, the size and number of open flowers reflected the relative age of individual flowers and floral longevity.  相似文献   

13.
When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly.  相似文献   

14.
Recent studies have shown that the diversity of flowering plants can enhance pollinator richness and visitation frequency and thereby increase the resilience of pollination. It is assumed that flower traits explain these effects, but it is still unclear which flower traits are responsible, and knowing that, if pollinator richness and visitation frequency are more driven by mass‐ratio effects (mean trait values) or by trait diversity. Here, we analyse a three‐year data set of pollinator observations collected in a European grassland plant diversity experiment (The Jena experiment). The data entail comprehensive flower trait measurements, including reward traits (nectar and pollen amount), morphological traits (height, symmetry, area, colour spectra) and chemical traits (nectar‐amino acid and nectar‐sugar concentration). We test if pollinator species richness and visitation frequency of flower communities depend on overall functional diversity combining all flower traits within a community, single trait diversities (within trait variation) and community‐weighted means of the single traits, using Bayesian inference. Overall functional diversity did not affect pollinator species richness, but reduced visitation frequency. When looking at individual flower traits separately, we found that single trait diversity of flower reflectance and flower morphology were important predictors of pollinator visitation frequency. Moreover, independent of total flower abundance, community‐weighted means of flower height, area, reflectance, nectar‐sugar concentration and nectar‐amino acid concentration strongly affected both pollinator species richness and visitation frequency. Our results, challenge the idea that functional diversity always positively affects ecosystem functions. Nonetheless, we demonstrate that both single trait diversity and mass‐ratio effects of flower traits play an important role for diverse and frequent flower visits, which underlines the functionality of flower traits for pollination services.  相似文献   

15.
CRESSWELL  J. E. 《Annals of botany》1998,81(4):463-473
Zoophilous flowers often appear to be precisely formed for pollentransfer and exhibit relatively little variability in structurewithin species. Functional optimization by the seemingly exactingrequirements of pollen transfer may account for these observations.I used the results of a literature survey to examine the levelsof intraspecific variation in flowers across a wide range oftaxa. The least variable attributes were those potentially affectingthe mechanical fit between flower and pollinator, which arepotentially constrained by selection for pollination performance.I discuss six mechanisms by which plant-pollinator interactionscould generate stabilizing selection on flowers. In addition,I consider the stabilizing roles of limiting resources and alsotwo functionally-neutral mechanisms. Further work is requiredto identify the actual mechanisms by which selection stabilizesthe evolution of flowers.Copyright 1998 Annals of Botany Company stabilizing selection, flowers, pollination, variation  相似文献   

16.
Abstract. We analyse the hypothesis that predictable gradients occur in plant–pollinator interactions along altitudinal gradients due to thermal constraints on insect body size and floral traits being selected for by pollinators. Pollinators’ size should follow Bergmann's rule in mountains (larger body size at higher altitudes) and selection should, in turn, lead to larger flower size at higher altitudes. The study focuses on the flower and pollinator size variation in 11 Cytisus scoparius populations located between 680 and 1300 m a.s.l., and on the relationship between flower size and pollination success of plants in each population. Significant differences among populations were found in flower size, pollinator size and fruiting success (anova , P < 0.001 in all cases). Regression models show that (i) pollinator size increases significantly with altitude, (ii) a parallel quadratic increase in flower size and (iii) a quadratic decrease in pollination success with altitude. Moreover, there is a tendency of plants with smaller flowers in each population to have a higher percentage of flowers initiating development into fruits (ancova , P < 0.05). All these observations support the presence of the predicted gradient in the studied species and they suggest the possibility of it to be somewhat common among plants that occupy large altitudinal ranges due to the simple basis on which it could be rooted.  相似文献   

17.
Plant–pollinator interactions are believed to play a major role in the evolution of floral traits. Flower colour and flower size are important for attracting pollinators, directly influencing reproduction, and thus expected to be under pollinator‐mediated selection. Pollinator‐mediated selection is also proposed to play a role in maintaining flower colour polymorphism within populations. However, pigment concentrations, and thus flower colour, are also under selective pressures independent of pollinators. We quantified phenotypic pollinator‐mediated selection on flower colour and size in two colour polymorphic Iris species. Using female fitness, we estimated phenotypic selection on flower colour and size, and tested for pollinator‐mediated selection by comparing selection gradients between flowers open to natural pollination and supplementary pollinated flowers. In both species, we found evidence for pollen limitation, which set the base for pollinator‐mediated selection. In the colour dimorphic Iris lutescens, while pigment concentration and flower size were found to be under selection, this was independent of pollinators. For the polymorphic Iris pumila, pigment concentration is under selective pressure by pollinators, but only for one colour morph. Our results suggest that pollinators are not the main agents of selection on floral traits in these irises, as opposed to the accepted paradigm on floral evolution. This study provides an opposing example to the largely‐accepted theory that pollinators are the major agent of selection on floral traits.  相似文献   

18.
Aims Adaptive evolution of invasive species is both particularly exciting for the evolutionary biologist and worrisome for those interested in controlling or halting spread. Invasive species often have a distinct timeline and well-recorded population expansion. As invaders encounter new environments, they undergo rapid adaptive evolution. Our aim in this study was to measure variation of floral size in the invasive shrub Cytisus scoparius (Scotch broom) and measure natural selection by pollinators on that trait. Past research has found that this invasive plant is pollinator limited in Washington State and that declines in pollinator populations can contribute to local extinction in another invaded range (New Zealand). This plant is pollinated by both native and introduced species of bees, representing a broad range of pollinator sizes. Cytisus scoparius has a flower structure that is highly conducive to studies on pollinator choice, even in the absence of direct pollinator observations.Methods We surveyed urban and rural sites in and around the city of Olympia in Washington State. Measuring banner width, we were able to show that flower size varies substantially between plants but minimally within plants. By measuring the proportion of flowers that were 'tripped', we could determine pollinator visitation rates and thus determine the level of selection due to pollinator choice alone.Important findings We found that C. scoparius is under natural selection by pollinators for increased flower size. However, such positive natural selection was only seen in urban populations although it was consistent across two flowering seasons. Rural populations of Scotch broom do not appear to be under selection on flower size. The natural selection by pollinators on broom flowers could result in adaptive evolution into a new pollination niche by an invading species. A higher level of variation in broom flowers seen here than seen in previous works in native regions suggests that C. scoparius may be highly diverse and primed for adaptive evolution.  相似文献   

19.
Montgomery BR  Rathcke BJ 《Oecologia》2012,168(2):449-458
Plant species vary greatly in the degree to which floral morphology restricts access to the flower interior. Restrictiveness of flower corollas may influence heterospecific pollen receipt, but the impact of floral morphology on heterospecific pollen transfer has received little attention. We characterized patterns of pollinator visitation and quantities of conspecific and heterospecific pollen receipt for 29 species with a range of floral morphologies in a prairie community dominated by the introduced plant Euphorbia esula (leafy spurge) which has an unrestrictive morphology. Pollinator overlap was significantly greater between Euphorbia and other unrestrictive flowers than restrictive flowers. Compared to flowers with restrictive morphologies, unrestrictive flowers received significantly more Euphorbia pollen, more heterospecific pollen from other sources, and a greater diversity of pollen species, but not more conspecific pollen. However, stigmatic surface area was significantly larger for flowers with unrestrictive morphologies, and the density of Euphorbia and other heterospecific pollen per stigmatic area did not significantly differ between flower types. These findings suggest that the smaller stigma size in restrictive flowers partly accounts for their decreased heterospecific pollen receipt, but that restrictiveness also allows species to increase the purity of pollen loads they receive. Given that restrictive flowers receive fewer heterospecific pollen grains but at a higher density, the effect of restrictiveness on fecundity depends on whether absolute quantity or density of heterospecific pollen affects fecundity more. Our results also indicate that abundant neighbors are not necessarily important heterospecific pollen sources since Euphorbia pollen was rarely abundant on heterospecifics.  相似文献   

20.
Floral symmetry and fusion of perianth parts are factors that contribute to fine-tune the match between flowers and their animal pollination vectors. In the present study, we investigated whether the possession of a sympetalous (fused) corolla and bilateral symmetry of flowers translate into decreased intra-specific variability as a result of natural stabilizing selection exerted by pollinators. Average size of the corolla and intra-specific variability were determined in two sets of southern Spanish entomophilous plant species. In the first set, taxa were paired by family to control for the effect of phylogeny (phylogenetically independent contrasts), whereas in the second set species were selected at random. Flower size data from a previous study (with different species) were also used to test the hypothesis that petal fusion contributes to decrease intra-specific variability. In the phylogenetically independent contrasts, floral symmetry was a significant correlate of intra-specific variation, with bilaterally symmetrical flowers showing more constancy than radially symmetrical flowers (i.e. unsophisticated from a functional perspective). As regards petal fusion, species with fused petals were on average more constant than choripetalous species, but the difference was not statistically significant. The reanalysis of data from a previous study yielded largely similar results, with a distinct effect of symmetry on variability, but no effect of petal fusion. The randomly-chosen species sample, on the other hand, failed to reveal any significant effect of either symmetry or petal fusion on intra-specific variation. The problem of low-statistical power in this kind of analysis, and the difficulty of testing an evolutionary hypothesis that involves phenotypic traits with a high degree of morphological correlation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号