首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的:探讨镉(Cd)对大鼠心室肌细胞动作电位(AP)及L-型钙电流(ICa-L)影响。方法:用常规微电极和全细胞膜片钳技术记录心肌细胞动作电位和ICa-L。结果:①不同浓度的CdCl2可降低大鼠心肌细胞动作电位幅值(APA),缩短复极化时程(APD)。②不同浓度的CdCl2明显抑制大鼠心室肌细胞钙通道电流。结论:CdCl2抑制大鼠心室肌细胞动作电位和ICa-L,可能是Cd对心肌毒性的重要机制之一。  相似文献   

2.
目的:从电生理角度探讨葛根素抗心律失常的可能机制。方法:采用膜片钳技术记录大鼠心室肌细胞动作电位(AP)、转染的人胚胎肾细胞缓慢延迟整流钾电流(IKs),观察加药前、后葛根素对AP和IKs的影响。结果:0.01、0.1、1 mmol/L葛根素可浓度依赖性地延长动作电位时程,分别使APD50从(71.8±11.8)ms延长至(86.9±10.7)ms、(100.5±14.1)ms和(123.6±25.4)ms;使APD90从(164.6±21.4)ms延长至(188.3±11.5)ms、(221.6±25.7)ms和(278.7±38.2)ms(n=6,均P0.05),而对RMP、APA和APD20无显著影响。此外,0.01、0.1、1 mmol/L葛根素对IKs抑制率分别为(17.8±2.5)%、(40.4±1.9)%和(60.9±3.2)%(n=6,均P0.05)。结论:葛根素可能通过抑制IKs来延长动作电位时程,发挥抗心律失常作用。  相似文献   

3.
目的:研究银杏苦内酯B对正常和缺血心室肌细胞动作电位(action potential,AP),L-型钙电流(L-type calcium current,ICa-L)、延迟整流钾电流(Delayed Rectifier Currennt,IK)的影响.方法:用常规细胞内微电极方法记录豚鼠心室肌细胞动作电位,用全细胞膜片钳技术记录游离心室肌细胞离子流.结果:①在生理条件下,银杏苦内酯B可缩短心室肌细胞动作电位时程 (action potential duration,APD),但对AP其他参数无影响,银杏苦内酯B可增大IK,呈浓度依赖性,但对ICa-L无显著作用;②在缺血条件下,APD50、APD90明显缩短,RP、APA减小,Vmax减慢,而银杏苦内酯B则可延缓和减轻缺血所引起上述参数的变化;3.在缺血条件下,IK和ICa-L均受到抑制,但加入银杏苦内酯B后可逆转缺血所造成这两种离子流的减小.结论:银杏苦内酯B可对抗心肌缺血所引起的心肌电生理的变化,提示银杏苦内酯B可预防心律失常的发生.  相似文献   

4.
目的:观察孕酮(pfogesterone)对心室肌细胞动作电位的影响。方法:采用玻璃微电极技术,引导离体豚鼠心室乳头肌细胞动作电位,观察孕酮不同浓度及作用时间对心室肌细胞动作电位及有效不应期的影响。结果:①较高浓度的孕酮使心室肌细胞动作电位零期最大除极速率(Vmax)和动作电位幅度(APA)降低,使心室肌细胞有效不应期(ERP)延长;②较高浓度孕酮使心室肌细胞动作电位时程APD20缩短;使动作电位时程APD90、APD延长。结论:孕酮具有抑制心室肌细胞Na^ 通道、K^ 通道和Ca^2 通道的作用。  相似文献   

5.
目的:研究尿素通道蛋白B(UT-B)基因敲除对小鼠心脏电生理特性的影响。方法:使用常规的心电图、心肌细胞动作电位记录方法和膜片钳实验技术。结果:①UT-B基因敲除小鼠30%发生了不同程度的心律失常,而对照组的野生C57小鼠无一例发生心律失常。②基因敲除小鼠心室肌细胞动作电位幅值(APA)及最大除极速度(Vmax)明显受到抑制(P<0.05),而心室肌细胞动作电位复极50%、90%时程(APD50、APD90)和正常对照组比明显延长(P<0.05)。③基因敲除小鼠心室肌细胞膜上钠离子通道电流幅值和对照组比明显降低(p<0.01)。结论:UT-B基因敲除可以导致小鼠心脏电生理特性发生改变。  相似文献   

6.
氧自由基致豚鼠心室肌细胞跨膜电位变化的离子电流基础   总被引:7,自引:0,他引:7  
目的:旨在提示氧自由基参与缺血/再灌注性心委失常发生的离子电流基础。方法:采用膜片钳全细胞式记录技术,观察H2O2(1mmol/L)对豚鼠心室肌细胞跨膜电位和相关离子电流的影响。结果:H2O2使豚鼠心肌单细胞的静息电位(RP)降低,动作电位时程(ASD)显著缩短,对动作电位幅度(APA)和超射(OS)及钠电流的峰值(INa)均无明显影响;明显抑制内向整流钾电流(IK1),尤其在超极化时;增强延迟外  相似文献   

7.
血管紧张素Ⅱ对缺血心肌细胞钾离子通道的作用   总被引:5,自引:0,他引:5  
Wang WW  Zhu YC  Yao T  Zheng P  Gong QL 《生理学报》2002,54(2):149-153
实验用胶原酶酶解法急性分离豚鼠心室肌细胞,利用全细胞膜片钳的方法记录心室肌细胞的延迟整流钾电流(Ik)、内向整流钾电流(Ik1)和ATP敏感钾电流(IKATP)。采用低氧、无糖、高乳酸和酸中毒综合方式模拟缺血灌流,造成细胞的模拟缺血,并在缺血的基础上继续用含100nmol/L AngⅡ灌流细胞,观察Ang Ⅱ对模拟缺血心室肌细胞钾离子通道的影响。实验结果显示:(1)模拟缺血时,Ik明显减小;Ang Ⅱ能进一步抑制Ik。(2)模拟缺血条件下,Ik1受到抑制,并且以内向电流的抑制为主;Ang Ⅱ可加强对Ik1内向电流的抑制,而对部分外向电流则有增加的作用。(3)模拟缺血使IKATP外向电流略有增加;Ang Ⅱ则明显加强IKATP外向电流,此效应能被优降糖所阻断。  相似文献   

8.
目的:观察不同浓度17β雌二醇(E2)与孕酮(P)联合运用时豚鼠心室乳头肌细胞动作电位及心肌收缩力的影响.方法:采用常规玻璃微电极技术记录豚鼠心室乳头肌细胞动作电位,生理二道记录仪与示波器连接记录收缩力.结果:①E2与P单独作用可使动作电位时程(APD90、APD)延长,APD20缩短,心肌收缩力降低,APA、Vmax降低.②不同浓度E2与P联合应用,P可加强E2的效应.结论:E2与P可能抑制Ca2 通道、K 通道、Na 通道,不同浓度E2与P联合应用,P可加强E2的效应,这种作用可能呈现浓度依赖性,提示在临床应用中加用孕激素应以低浓度为益.  相似文献   

9.
乳酸左氧氟沙星对豚鼠心肌细胞电生理的影响   总被引:1,自引:0,他引:1  
目的了解乳酸左氧氟沙星(LVFX)对豚鼠心室肌细胞电生理的影响.方法经腹腔注射不同剂量的LVFX,记录并分析注药后5~360 min豚鼠Ⅱ导联心电图的QT间期,以及校正的QT间期(QTc).采用全细胞膜片钳技术,记录不同浓度LVFX对体外单个心室肌细胞的延迟整流钾电流(IK)的作用.结果①LVFX给药量为200 mg/kg时,心电图QT间期延长19.38%±3.15%(P<0.05);在50 mg/kg和100 mg/kg等较低剂量时,QT间期延长不明显(P>0.05).②LVFX抑制IK电流,且抑制作用呈现电压依赖性和浓度依赖性.结论LVFX可能通过抑制心肌细胞IK电流引起心脏QT间期延长,临床应谨慎使用.  相似文献   

10.
Li YR  Yang BF  Xu CQ  Zhou J  Yang YB  Zhang JY  Sun MZ 《生理学报》2000,52(5):427-430
使用全细胞膜片箝技术, 研究RP62719对内向整流钾电流(IK1)、瞬时外向钾电流(Ito)和延迟外向整流钾电流(IK)的作用, 并探讨其抗心律失常作用的机制.实验结果表明, 在指令电压为-100 mV时, RP62719可显著抑制豚鼠心室肌细胞IK1, 半数抑制浓度(IC50)为5.0±1.0 μmol/L.RP62719 10 μmol/L在+40 mV时对犬心室肌细胞Ito抑制率为84.0±4.4%, IC50为1.2±0.51 μmol/L.在+40 mV时, 50 μmol/L RP62719还可使豚鼠心室肌细胞IKstep 减少50.0±8.3%, IKtail减少56.0±4.9%, IC50分别为4.2±0.8 μmol/L和3.3±0.75 μmol/L.提示RP62719抗心律失常的离子机制与其对IK1、Ito及IK的抑制有关.  相似文献   

11.
To study how conserved fundamental concepts of the heat stress response (HSR) are in photosynthetic eukaryotes, we applied pharmaceutical and antisense/amiRNA approaches to the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HSR appears to be triggered by the accumulation of unfolded proteins, as it was induced at ambient temperatures by feeding cells with the arginine analog canavanine. The protein kinase inhibitor staurosporine strongly retarded the HSR, demonstrating the importance of phosphorylation during activation of the HSR also in Chlamydomonas. While the removal of extracellular calcium by the application of EGTA and BAPTA inhibited the HSR in moss and higher plants, only the addition of BAPTA, but not of EGTA, retarded the HSR and impaired thermotoler- ance in Chlamydomonas. The addition of cycloheximide, an inhibitor of cytosolic protein synthesis, abolished the attenu- ation of the HSR, indicating that protein synthesis is necessary to restore proteostasis. HSP90 inhibitors induced a stress response when added at ambient conditions and retarded attenuation of the HSR at elevated temperatures. In addition, we detected a direct physical interaction between cytosolic HSP90A/HSP70A and heat shock factor 1, but surprisingly this interaction persisted after the onset of stress. Finally, the expression of antisense constructs targeting chloroplast HSP70B resulted in a delay of the cell's entire HSR, thus suggesting the existence of a retrograde stress signaling cascade that is desensitized in HSP7OB-antisense strains.  相似文献   

12.
Citrate synthase has a key role in the tricarboxylic (TCA) cycle of mitochondria of all organisms, as it cata- lyzes the first committed step which is the fusion of a carbon-carbon bond between oxaloacetate and acetyl CoA. The regulation of TCA cycle function is especially important in plants, since mitochondrial activities have to be coordinated with photosynthesis. The posttranslational regulation of TCA cycle activity in plants is thus far almost entirely unexplored. Although several TCA cycle enzymes have been identified as thioredoxin targets in vitro, the existence of any thioredoxin-dependent regulation as known for the Calvin cycle, yet remains to be demonstrated. Here we have investigated the redox regulation of the Arabidopsis citrate synthase enzyme by site-directed mutagenesis of its six cysteine residues. Our results indicate that oxidation inhibits the enzyme activity by the formation of mixed disulfides, as the partially oxidized citrate synthase enzyme forms large redox-dependent aggregates. Furthermore, we were able to demonstrate that thioredoxin can cleave diverse intraas well as intermolecular disulfide bridges, which strongly enhances the activity of the enzyme. Activity measurements with the cysteine variants of the enzyme revealed important cysteine residues affecting total enzyme activity as well as the redox sensitivity of the enzyme.  相似文献   

13.
The pH of intracellular compartments is essential for the viability of cells. Despite its relevance, little is known about the pH of these compartments. To measure pH in vivo, we have first generated two pH sensors by combining the improved-solubility feature of solubility-modified green fluorescent protein (GFP) (smGFP) with the pH-sensing capabil- ity of the pHluorins and codon optimized for expression in Arabidopsis. PEpHluorin (plant-solubility-modified ecliptic pHluorin) gradually loses fluorescence as pH is lowered with fluorescence vanishing at pH 6.2 and PRpHluorin (plant- solubility-modified ratiomatric pHluorin), a dual-excitation sensor, allowing for precise measurements. Compartment- specific sensors were generated by further fusing specific sorting signals to PEpHluorin and PRpHluorin. Our results show that the pH of cytosol and nucleus is similar (pH 7.3 and 7.2), while peroxisomes, mitochondrial matrix, and plastidial stroma have alkaline pH. Compartments of the secretory pathway reveal a gradual acidification, spanning from pH 7.1 in the endoplasmic reticulum (ER) to pH 5.2 in the vacuole. Surprisingly, pH in the trans-Golgi network (TGN) and mul- tivesicular body (MVB) is, with pH 6.3 and 6.2, quite similar. The inhibition of vacuolar-type H+-ATPase (V-ATPase) with concanamycin A (ConcA) caused drastic increase in pH in TGN and vacuole. Overall, the PEpHluorin and PRpHluorin are excellent pH sensors for visualization and quantification of pH in vivo, respectively.  相似文献   

14.
Aphis gossypii Glover shows obvious host specialization, with cucurbit- and cotton-specialized biotypes or host races in many regions. Because its annual natal hostcrops senesce earlier the cucurbit-specialized biotype may suffer food deficiency. The method this biotype uses to overcome this challenge is still poorly understood. In orderto understand the potential of the cucurbit-specialized biotype aphids in host shift and usage, the performance of this biotype on cotton (Gossypium hirsutum), a common butpoor quality host plant, was explored in this study. The cucurbit-specialized aphids could establish populations on cotton only when these plants had at least nine leaves, and subsequent populations developed rather slowly. The presence of whitefly populations on cotton improved the success rate of cucurbit-specialized aphids. The cucurbit-specialized aphidswere mainly distributed on the older leaves of cotton, with only a few settling on the upper leaves. The cucurbit-specialized aphids reared on cotton for 40, 54 and 61 days stillmaintained strong preference for their natal host plant, cucumber (Cucumis sativus), rather than cotton, and their net reproductive rates and intrinsic rates of natural increase weredramatically lower when they were transferred onto new six-leaf cotton plants or detached leaves. Therefore, we concluded that the cucurbit-specialized aphids have the potentialto utilize mature or whitefly-stressed cotton plants, but that this feeding experience on cotton did not alter their specialization for cucurbits. Some cotton plants could act as atemporary host for the cucurbit-specialized aphids to overcome food deficiency arising from senescing cucurbits.  相似文献   

15.
The development of a plant leaf is a meticulously orchestrated sequence of events producing a complex organ comprising diverse cell types. The reticulate class of leaf variegation mutants displays contrasting pigmentation between veins and interveinal regions due to specific aberrations in the development of mesophyll cells. Thus, the reticulate mutants offer a potent tool to investigate cell-type-specific developmental processes. The discovery that most mutants are affected in plastid-localized, metabolic pathways that are strongly expressed in vasculature-associated tis- sues implicates a crucial role for the bundle sheath and their chloroplasts in proper development of the mesophyll cells. Here, we review the reticulate mutants and their phenotypic characteristics, with a focus on those in Arabidopsis thali- ana. Two alternative models have been put forward to explain the relationship between plastid metabolism and meso- phyll cell development, which we call here the supply and the signaling hypotheses. We critically assess these proposed models and discuss their implications for leaf development and bundle sheath function in C3 species. The characteriza- tion of the reticulate mutants supports the significance of plastid retrograde signaling in cell development and highlights the significance of the bundle sheath in C3 photosynthesis.  相似文献   

16.
A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructedwith 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed usingUPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1-α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny wasstrongly supported by EFI-α, and analysis of COl and EFI-α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buch-hera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis,fabae, gossypii, and middletonii. Results place Aphis and species of the generaProtaphis Bōrner, 1952, Toxoptera Koch, 1856 and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogenyshows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929), comb. nov., P. echinaceae(Lagos and Voegtlin, 2009), comb. nov., and P. middletonii (Thomas, 1879). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicatesthat the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.).  相似文献   

17.
Proper vesicle tethering and membrane fusion at the cell plate are essential for cytokinesis. Both the vesicle tethering complex exocyst and membrane fusion regulator KEULE were shown to function in cell plate formation, but the exact mechanisms still remain to be explored. In this study, using yeast two-hybrid (Y-2-H) assay, we found that SEC6 interacted with KEULE, and that a small portion of C-terminal region of KEULE was required for the interaction. The direct SEC6-KEULE interaction was supported by further studies using in vitro pull-down assay, immunoprecipitation, and in vivo bimolecular florescence complementation (BIFC) microscopy, sec6 mutants were male gametophytic lethal as reported; however, pollen-rescued sec6 mutants (PRsec6) displayed cytokinesis defects in the embryonic cells and later in the leaf pavement cells and the guard cells. SEC6 and KEULE proteins were co-localized to the cell plate during cytokine- sis in transgenic Arabidopsis. Furthermore, only SEC6 but not other exocyst subunits located in the cell plate interacted with KEULE in vitro. These results demonstrated that, like KEULE, SEC6 plays a physiological role in cytokinesis, and the SEC6-KEULE interaction may serve as a novel molecular linkage between arriving vesicles and membrane fusion machin- ery or directly regulate membrane fusion during cell plate formation in plants.  相似文献   

18.
Reactive oxygen species and auxin play important roles in the networks that regulate plant development and morphogenetic changes, However, the molecular mechanisms underlying the interactions between them are poorly understood. This study isolated a mas (More Axillary Shoots) mutant, which was identified as an allele of the mitochondrial AAA-protease AtFtSH4, and characterized the function of the FtSH4 gene in regulating plant development by medi- ating the peroxidase-dependent interplay between hydrogen peroxide (H2Oz) and auxin homeostasis. The phenotypes of dwarfism and increased axillary branches observed in the mas (renamed as ftsh4-4) mutant result from a decrease in the IAA concentration. The expression levels of several auxin signaling genes, including IAA1, IAA2, and IAA3, as well as several auxin binding and transport genes, decreased significantly in ftsh4-4 plants. However, the H202 and peroxidases levels, which also have IAA oxidase activity, were significantly elevated in ftsh4-4 plants. The ftsh4-4 phenotypes could be reversed by expressing the iaaM gene or by knocking down the peroxidase genes PRX34 and PRX33. Both approaches can increase auxin levels in the ftsh4-4 mutant. Taken together, these results provided direct molecular and genetic evidence for the interaction between mitochondrial ATP-dependent protease, H2O2, and auxin homeostasis to regulate plant growth and development.  相似文献   

19.
Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti- cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coil resulted in heteromeric enzyme with enhanced activity producing only GPR While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MelA) treatment of leaves sig- nificantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.  相似文献   

20.
Pollution of the aquatic environment is an ever-growing problem, as waters are the ultimate sink for the large number of xenobiotics from multiple sources. DNA damaging agents have a significant ecological relevance since they are implicated in many pathological processes and exert effects beyond that of individual being active through following generations. A large number of methods have been applied to evaluate genotoxic damage in different aquatic species. Comet assay, as method for de- tecting DNA alterations, and micronucleus test, as an index of chromosomal damage are the most widely applied and validated methods in field studies. These methods were applied in different vertebrate and invertebrate aquatic species, but only mollusk and fish species have been employed in routine biomonitoring programs. Mussels, due to their widely geographical distribution and the suitability for caging represent the bioindicator of choice in field studies. Mytilus species is the most used marine mussel. The use of fish is limited to specific geographic areas. The present review mainly focuses on the application of comet assay and micronucleus test in mussels. A number of biomonitoring studies in mussels, using comet assay or micronucleus test, revealed exposure to different classes of genotoxic compounds with a good discrimination power. The different evidence from the two as- says, reflects different biological mechanisms for the two genetic endpoints, DNA damage and chromosomal damage, suggesting their combined application in the field. Different endogenous and exogenous factors have been shown to modulate the genotoxic responses in mussels, acting as confounding factors in environmental monitoring. The use of standardized protocol for caging, sampling and genotoxity evaluation is critical in biomonitoring studies. The use of a multimarker approach coupling genotoxicity biomarkers with physiological and biochemical factors allows to have a complete picture of the environmental pollution [Current Zoology 60 (2): 273-284, 2014].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号