首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) multi-epitope of Chlamydia trachomatis. A short gene of muiti-epitope derived from MOMP containing multiple T- and B-cell epitopes was artificially synthesized. The recombinant plasmid pET32a(+) containing codon optimized MOMP multi-epitope gene was constructed. Expression of the fusion protein Trx-His- MOMP multi-epitope in Escherichia coli was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analysis. Balb/c mice were inoculated with the purified fusion protein subcutaneously three times with 2-week intervals. Results showed that the MOMP multiepitope elicited not only strong humoral immune responses to C. trachomatis by generating significantly high levels of specific antibodies (lgG1 and IgG2a), but also a cellular immune response by inducing robust cytotoxic T lymphocyte responses in mice. Furthermore, the MOMP multi- epitope substantially primed secretion of IFN-γ, revealing that this vaccine could induce a strong Thl response. Finally, the mice vaccinated with the MOMP multi-epitope displayed a reduction of C. trachomatis shedding upon a chlamydial challenge and an accelerated clearance of the infected C. trachomatis. In conclusion, the MOMP multi- epitope vaccine may have the potentiality for the development of effective prophylactic and therapeutic vaccines against the C. trachomatis infection.  相似文献   

3.
目的:探讨热休克蛋白90(HSP90)在糖皮质激素(GC)信号通路中的作用及其对气道黏蛋白(MUC)5AC表达的调控机制。方法:体外培养气道上皮细胞株BEAS-2B,给予HSP90特异性阻断剂格尔德霉素(GA)和地塞米松(DEX)刺激,比较各组MUC5AC的含量,糖皮质激素受体(GR)的核蛋白表达和GR结合活性。结果:与对照组相比,DEX组的MUC5AC mRNA和蛋白水平降低,伴GR核蛋白水平增高(P0.05);与DEX组相比,GA+DEX组MUC5AC mRNA和蛋白水平升高,GR核蛋白水平降低。放射配体结合实验显示,与对照组相比,GA组的受体最大结合容量(Bmax)降低,平衡解离常数(Kd)升高。结论:HSP90可参与GC及GR的抗气道黏液高分泌效应,其抑制剂可阻断上述效应,该效应是通过降低GR的结合活性来调控的。  相似文献   

4.
A plant's capability to cope with environmental challenges largely relies on signal transmission through mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, MPK3 is particularly strongly associated with numerous abiotic and biotic stress responses. Identification of MPK3 substrates is a milestone towards improving stress resistance in plants. Here, we characterize AZI1, a lipid transfer protein (LTP)-related hybrid proline-rich protein (HyPRP), as a novel target of MPK3. AZI1 is phosphorylated by MPK3 in vitro. As documented by co-immunoprecipitation and bimolecular fluorescence complementation experiments, AZI1 interacts with MPK3 to form protein complexes in planta. Furthermore, null mutants of azil are hypersensitive to salt stress, while AZIl-overexpressing lines are markedly more tolerant. AZI1 overexpression in the mpk3 genetic background partially alleviates the salt-hypersensitive phenotype of this mutant, but functional MPK3 appears to be required for the full extent of AZIl-conferred robustness. Notably, this robustness does not come at the expense of normal development. Immunoblot and RT-PCR data point to a role of MPK3 as positive regulator of AZI1 abundance.  相似文献   

5.
Proper vesicle tethering and membrane fusion at the cell plate are essential for cytokinesis. Both the vesicle tethering complex exocyst and membrane fusion regulator KEULE were shown to function in cell plate formation, but the exact mechanisms still remain to be explored. In this study, using yeast two-hybrid (Y-2-H) assay, we found that SEC6 interacted with KEULE, and that a small portion of C-terminal region of KEULE was required for the interaction. The direct SEC6-KEULE interaction was supported by further studies using in vitro pull-down assay, immunoprecipitation, and in vivo bimolecular florescence complementation (BIFC) microscopy, sec6 mutants were male gametophytic lethal as reported; however, pollen-rescued sec6 mutants (PRsec6) displayed cytokinesis defects in the embryonic cells and later in the leaf pavement cells and the guard cells. SEC6 and KEULE proteins were co-localized to the cell plate during cytokine- sis in transgenic Arabidopsis. Furthermore, only SEC6 but not other exocyst subunits located in the cell plate interacted with KEULE in vitro. These results demonstrated that, like KEULE, SEC6 plays a physiological role in cytokinesis, and the SEC6-KEULE interaction may serve as a novel molecular linkage between arriving vesicles and membrane fusion machin- ery or directly regulate membrane fusion during cell plate formation in plants.  相似文献   

6.
The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in Arabidopsis and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stress perception. All the LecRLKs possess three domains: an N-terminal lectin domain, an intermediate transmembrane domain, and a C-terminal kinase domain. On the basis of lectin domain variability, LecRLKs have been subgrouped into three subclasses: L-, G-, and C-type LecRLKs. While the previous studies on LecRLKs were dedicated to classification, comparative structural analysis and expression analysis by promoter-based studies, most of the recent studies on LecRLKs have laid special emphasis on the potential of this gene family in regulating biotic/abiotic stress and developmental pathways in plants, thus mak- ing the prospects of studying the LecRLK-mediated regulatory mechanism exceptionally promising. In this review, we have described in detail the LecRLK gene family with respect to a historical, evolutionary, and structural point of view. Furthermore, we have laid emphasis on the LecRLKs roles in development, stress conditions, and hormonal response. We have also discussed the exciting research prospects offered by the current knowledge on the LecRLK gene family. The multitude of the LecRLK gene family members and their functional diversity mark these genes as both interesting and worthy candidates for further analysis, especially in the field of crop improvement.  相似文献   

7.
Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based for- ward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFR While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compart- ments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lyric vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting.  相似文献   

8.
9.
Reactive oxygen species and auxin play important roles in the networks that regulate plant development and morphogenetic changes, However, the molecular mechanisms underlying the interactions between them are poorly understood. This study isolated a mas (More Axillary Shoots) mutant, which was identified as an allele of the mitochondrial AAA-protease AtFtSH4, and characterized the function of the FtSH4 gene in regulating plant development by medi- ating the peroxidase-dependent interplay between hydrogen peroxide (H2Oz) and auxin homeostasis. The phenotypes of dwarfism and increased axillary branches observed in the mas (renamed as ftsh4-4) mutant result from a decrease in the IAA concentration. The expression levels of several auxin signaling genes, including IAA1, IAA2, and IAA3, as well as several auxin binding and transport genes, decreased significantly in ftsh4-4 plants. However, the H202 and peroxidases levels, which also have IAA oxidase activity, were significantly elevated in ftsh4-4 plants. The ftsh4-4 phenotypes could be reversed by expressing the iaaM gene or by knocking down the peroxidase genes PRX34 and PRX33. Both approaches can increase auxin levels in the ftsh4-4 mutant. Taken together, these results provided direct molecular and genetic evidence for the interaction between mitochondrial ATP-dependent protease, H2O2, and auxin homeostasis to regulate plant growth and development.  相似文献   

10.
11.
12.
Most of the mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins carrying an N-terminal targeting peptide (TP) directing them specifically to a correct organelle. However, there is a group of proteins that are dually targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). Here, we have investigated pattern properties of import determinants of organelle-specific TPs and dTPs combining mathematical multivariate data analysis (MVDA) with in vitro organellar import studies. We have used large datasets of mitochondrial and chloroplastic proteins found in organellar proteomes as well as manually selected data sets of experimentally confirmed organelle-specific TPs and dTPs from Arabidopsis thaliana. Two classes of organelle-specific TPs could be distinguished by MVDA and potential patterns or periodicity in the amino acid sequence contributing to the separation were revealed, dTPs were found to have intermediate sequence features between the organelle-specific TPs. Interestingly, introducing positively charged residues to the dTPs showed clustering towards the mitochondrial TPs in silico and resulted in inhibition of chloroplast, but not mitochondrial import in in vitro organellar import studies. These findings suggest that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for the chloroplast import.  相似文献   

13.
Rice stripe virus (RSV) causes severe diseases in Oryza sativa (rice) in many Eastern Asian countries. Diseasespecific protein (SP) of RSV is a non-structural protein and its accumulation level in rice plant was shown to determine the severity of RSV symptoms. Here, we present evidence that expression of RSV SP alone in rice or Nicotiana benthamiana did not produce visible symptoms. Expression of SP in these two plants, however, enhanced RSV- or Potato virus X (PVX)- induced symptoms. Through yeast two-hybrid screening, GST pull-down, and bimolecular fluorescence complementation assays, we demonstrated that RSV SP interacted with PsbP, a 23-kDa oxygen-evolving complex protein, in both rice and N. benthamiana. Furthermore, our investigation showed that silencing of PsbP expression in both plants increased disease symptom severity and virus accumulation. Confocal microscopy using N, benthamiana protoplast showed that PsbP accu- mulated predominantly in chloroplast in wild-type N. benthamiana cells. In the presence of RSV SP, most PsbP was recruited into cytoplasm of the assayed cells. In addition, accumulation of SP during RSV infection resulted in alterations of chloroplast structure and function. Our findings shed light on the molecular mechanism underlying RSV disease symptom development.  相似文献   

14.
Ferredoxin-NADP+ oxidoreductase (FNR), functioning in the last step of the photosynthetic electron transfer chain, exists both as a soluble protein in the chloroplast stroma and tightly attached to chloroplast membranes. Surface plasmon resonance assays showed that the two FNR isoforms, LFNR1 and LFNR2, are bound to the thylakoid membrane via the C-terminal domains of Tic62 and TROL proteins in a pH-dependent manner. The tic62 trol double mutants contained a reduced level of FNR, exclusively found in the soluble stroma. Although the mutant plants showed no visual phenotype or defects in the function of photosystems under any conditions studied, a low ratio of NADPH/NADP~ was detected. Since the CO2 fixation capacity did not differ between the tic62 trol plants and wild-type, it seems that the plants are able to funnel reducing power to most crucial reactions to ensure survival and fitness of the plants. However, the activity of malate dehydrogenase was down-regulated in the mutant plants. Apparently, the plastid metabolism is able to cope with substantial changes in directing the electrons from the light reactions to stromal metabolism and thus only few differences are visible in steady-state metabolite pool sizes of the tic62 trol plants.  相似文献   

15.
Seedling development including hypocotyl elongation is a critical phase in the plant life cycle. Light regula- tion of hypocotyl elongation is primarily mediated through the blue light photoreceptor cryptochrome and red/far-red light photoreceptor phytochrome signaling pathways, comprising regulators including COP1, HY5, and phytochrome- interacting factors (PIFs). The novel phytohormones, strigolactones, also participate in regulating hypocotyl growth. However, how strigolactone coordinates with light and photoreceptors in the regulation of hypocotyl elongation is largely unclear. Here, we demonstrate that strigolactone inhibition of hypocotyl elongation is dependent on cryp- tochrome and phytochrome signaling pathways. The photoreceptor mutants cry1 cry2, phyA, and phyB are hyposensi- tive to strigolactone analog GR24 under the respective monochromatic light conditions, while cop1 and pifl pif3 pif4 pif5 (pifq) quadruple mutants are hypersensitive to GR24 in darkness. Genetic studies indicate that the enhanced respon- siveness of cop1 to GR24 is dependent on HY5 and MAX2, while that of pifq is independent of HY5. Further studies demonstrate that GR24 constitutively up-regulates HY5 expression in the dark and light, whereas GR24-promoted HY5 protein accumulation is light- and cryptochrome and phytochrome photoreceptor-dependent. These results suggest that the light dependency of strigolactone regulation of hypocotyl elongation is likely mediated through MAX2-dependent promotion of HY5 expression, light-dependent accumulation of HY5, and PIF-regulated components.  相似文献   

16.
PKZ, protein kinase containing Z-DNA domains, is a novel member of the vertebrate eIF2α kinase family. Containing a catalytic domain in C-terminus and two Z-DNA binding domains (Zαl and Zα2) in N-terminus, PKZ can be acti- vated through the binding of Zα to Z-DNA. However, the regulatory function of PKZ Zα remains to be established. Here, to understand the impact of PKZ Zα on DNA con- formational transition, wild-type ZαdZα2 and 11 mutant proteins were expressed and purified. At the same time, several different lengths of DNA hairpins-d(GC)nT4(GC), (n = 2-6) and an RNA hairpin-r(GC)6T4(GC)6 were synthesized. The effects of ZαdZα2 and mutant proteins on the conformation of these synthetic DNA or RNA hairpins were investigated by using circular dichroism spectrum and gel mobility shift assays. The results showed that DNA hair- pins retained a conventional B-DNA conformation in the absence of ZαdZα2, while some of the DNA hairpins (n 〉 3) were converted to Z-conformation under Zαd Zα2 induction. The tendency was proportionally associated with the increas- ing amount of GC repeat. In comparison with ZodZα2, ZαdZαd rather than Zα2ZαL2 displayed a higher ability in converting d(GC)6T4(GC)6 from B- to Z-DNA. These results demonstrated that Zcd sub-domain played a more essential role in the process of B-Z conformational transition than Zα2 sub-domain did. Mutant proteins (K34A, N38A, R39A, Y42A, P57A, P58A, and W60A) could not convert d(GC)6T4(GC)6 into Z-DNA, whereas S35A or K56A retained some partial activities. Interestingly, ZαlZα2 was also able to induce r(GC)6T4(GC)6 RNA from A-conform- ation to Z-conformation under appropriate conditions.  相似文献   

17.
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is an important component in the phytochrome signaling pathway and mediates plant responses to various environmental conditions. We found that PIF3 is involved in the inhibition of root growth of Arabidopsis thaliana seedlings induced by nitric oxide (NO) in light. Overexpression of PIF3 partially alleviated the inhibitory effect of NO on root growth, whereas the pif3-1 mutant displayed enhanced sensitivity to NO in terms of root growth. During phytochrome signaling, the photoreceptor PHYB mediates the degradation of PIF3. We found that the phyB-9 mutant had a similar phenotype to that of PIF3ox in terms of responsiveness to NO. Furthermore, NO treatment promoted the accumulation of PHYB, and thus reduced PIF3 content. Our results further show that the activity of PIF3 is regulated by the DELLA protein RGL3[RGA (repressor of gal-3) LIKE 3]. Therefore, we speculate that PIF3 lies downstream of PHYB and RGL3, and plays an important role in the inhibitory effect of NO on root growth of Arabidopsis seedlings in light.  相似文献   

18.
Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understand- ing of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and devel- opment, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.  相似文献   

19.
Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using whole- genome re-sequencing, we found that Oryza sativa Pseudo-Response Regulator37 (OsPRR37; hereafter PRR37) is respon- sible for the Early heading7-2 (EH7-2)/Heading date2 (Hd2) QTL which was identified from a cross of late-heading rice 'Milyang23 (M23)' and early-heading rice 'H143'. H143 contains a missense mutation of an invariantly conserved amino acid in the CCT (CONSTANS, CO-like, and TOC1) domain of PRR37 protein. In the world rice collection, different types of nonfunctional PRR37 alleles were found in many European and Asian rice cultivars. Notably, the japonica varieties harboring nonfunctional alleles of both Ghd7/Hd4 and PRR37/Hd2 flower extremely early under natural long-day condi- tions, and are adapted to the northernmost regions of rice cultivation, up to 53~ N latitude. Genetic analysis revealed that the effects of PRR37 and Ghd7 alleles on heading date are additive, and PRR37 down-regulates Hd3a expression to suppress flowering under long-day conditions. Our results demonstrate that natural variations in PRR37/Hd2 and GhdT/ Hd4 have contributed to the expansion of rice cultivation to temperate and cooler regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号