首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Mark Walker 《Bioethics》2014,28(5):214-224
The primary question to be addressed here is whether pre‐implantation genetic diagnosis (PGD), used for both negative and positive trait selection, benefits potential supernumerary embryos. The phrase ‘potential supernumerary embryos’ is used to indicate that PGD is typically performed on a set of embryos, only some of which will be implanted. Prior to any testing, each embryo in the set is potentially supernumerary in the sense that it may not be selected for implantation. Those embryos that are not selected, and hence destroyed or frozen, are ‘actually supernumerary’. The argument to be advanced is hypothetical: If embryos may be said to benefit or be harmed by our actions, then PGD used to select for an embryo or embryos with the highest expected Wellbeing benefits potential supernumerary embryos. The argument shows that the ‘non‐identity’ problem is not sufficient to show that eugenic selection does not benefit supernumerary embryos.  相似文献   

2.
Preimplantation genetic diagnosis (PGD) gives couples who have a high risk of transmitting genetic disorders to their baby the chance to have a healthy offspring through embryo genetic analysis and selection. Preimplantation genetic screening (PGS) is an effective method to select euploid embryos that may prevent repeated implantation failure or miscarriage. However, how and to whom PGS should be provided is a controversial topic. The first successful case of PGD of a human being was reported in 1990, and there have been tremendous improvements in this technology since then. Both embryo biopsy and genetic technologies have been improved dramatically, which increase the accuracy and expand the indications of PGD/PGS.  相似文献   

3.
ERICA HAIMES  KEN TAYLOR 《Bioethics》2011,25(6):334-341
This article is a response to McLeod and Baylis (2007) who speculate on the dangers of requesting fresh ‘spare’ embryos from IVF patients for human embryonic stem cell (hESC) research, particularly when those embryos are good enough to be transferred back to the woman. They argue that these embryos should be frozen instead. We explore what is meant by ‘spare’ embryos. We then provide empirical evidence, from a study of embryo donation and of embryo donors' views, to substantiate some of their speculations about the problems associated with requesting fresh embryos. However, we also question whether such problems are resolved by embryo freezing, since further empirical evidence suggests that this raises other social and ethical problems for patients. There is little evidence that the request for embryos for research, in itself, causes patients distress. We suggest, however, that no requests for fresh embryos should be made in the first cycle of IVF treatment. Deferring the request to a later cycle ensures that potential donors are better informed (by experience and reflection) about the possible destinations of their embryos and about the definition of ‘spare embryos’. Both this article, and that by McLeod and Baylis, emphasize the need to consider the views and experiences of embryo donors when evaluating the ethics of embryo donation for hESC research.  相似文献   

4.
Conventional PCR methods combined with linkage analysis based on short tandem repeats(STRs) or Karyomapping with single nucleotide polymorphism(SNP) arrays, have been applied to preimplantation genetic diagnosis(PGD) for spinal muscular atrophy(SMA), an autosome recessive disorder. However, it has limitations in SMA diagnosis by Karyomapping, and these methods are unable to distinguish wildtype embryos with carriers effectively. Mutated allele revealed by sequencing with aneuploidy and linkage analyses(MARSALA) is a new method allowing embryo selection by a one-step next-generation sequencing(NGS) procedure, which has been applied in PGD for both autosome dominant and X-linked diseases in our group previously. In this study, we carried out PGD based on MARSALA for two carrier families with SMA affected children. As a result, one of the couples has given birth to a healthy baby free of mutations in SMA-causing gene. It is the first time that MARSALA was applied to PGD for SMA, and we can distinguish the embryos with heterozygous deletion(carriers) from the wild-type(normal) ones accurately through this NGS-based method. In addition, direct mutation detection allows us to identify the affected embryos(homozygous deletion), which can be regarded as probands for linkage analysis, in case that the affected family member is absent. In the future, the NGS-based MARSALA method is expected to be used in PGD for all monogenetic disorders with known pathogenic gene mutation.  相似文献   

5.
The objective of our study was to investigate the heritabilities and genetic correlations between traits from a linear exterior assessment system and osteochondrosis (OC) measured by computed tomography (CT), and in addition, to study the genetic trend in a population where the conformation traits have been included in the breeding goal. The data material consisted of phenotypes from a total of 4571 Norsvin Landrace test boars. At the end of the test period, all boars were subjected to a detailed exterior assessment system. Within 10 days of the assessment, the boars were CT scanned for measuring OC. The total score of osteochondrosis (OCT), used in this study, is the sum of phenotypes from the assessment on the medial and lateral condyles at the distal end of both the humerus and the femur of the right and the left leg of the boar based on images from CT. The exterior assessment traits included in the study were; ‘front leg knee’ (FKNE), ‘front leg pasterns’ (FPAS), ‘front leg stance’ (FSTA), ‘front leg twisted pasterns’ (FFLK), ‘hind leg stance’, ‘hind leg pasterns’ (HPAS), ‘hind leg standing under’ (HSTU), ‘hind leg small inner toe’, ‘dipped back’, ‘arched back’ (ARCH) and ‘waddling hindquarters’ (WADL). The estimation of (co)variance components and breeding values were performed using bivariate animal genetic models. Breeding values for HSTU, HPAS, FPAS, WADL and OCT traits were additional outputs from the same bivariate analyses. The lowest heritability was found for FFLK (h2FFLK=0.05), whereas FPAS was estimated to have the highest heritability (h2FPAS=0.36), and OCT demonstrating a heritability of 0.29. Significant genetic correlations were found between several traits; the strongest correlation was between FSTA and FFLK (0.94), which was followed by the correlation between FPAS and FKNE (0.69). The traits ARCH and FSTA had significant genetic correlations to OCT, whereas all other genetic correlations between OCT and the conformation traits were low and not significantly different from 0. Our study shows positive genetic trends for the conformation traits included in the breeding goal. In general, low genetic correlations between conformation traits and OC were observed in our study.  相似文献   

6.
Procreative beneficence: why we should select the best children   总被引:8,自引:0,他引:8  
Savulescu J 《Bioethics》2001,15(5-6):413-426
Eugenic selection of embryos is now possible by employing in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD). While PGD is currently being employed for the purposes of detecting chromosomal abnormalities or inherited genetic abnormalities, it could in principle be used to test any genetic trait such as hair colour or eye colour.
Genetic research is rapidly progressing into the genetic basis of complex traits like intelligence and a gene has been identified for criminal behaviour in one family. Once the decision to have IVF is made, PGD has few 'costs' to couples, and people would be more inclined to use it to select less serious medical traits, such as a lower risk of developing Alzheimer Disease, or even for non-medical traits. PGD has already been used to select embryos of a desired gender in the absence of any history of sex-linked genetic disease.
I will argue that: (1) some non-disease genes affect the likelihood of us leading the best life; (2) we have a reason to use information which is available about such genes in our reproductive decision-making; (3) couples should select embryos or fetuses which are most likely to have the best life, based on available genetic information, including information about non-disease genes. I will also argue that we should allow selection for non-disease genes even if this maintains or increases social inequality. I will focus on genes for intelligence and sex selection.
I will defend a principle which I call Procreative Beneficence: couples (or single reproducers) should select the child, of the possible children they could have, who is expected to have the best life, or at least as good a life as the others, based on the relevant, available information.  相似文献   

7.
One of the more controversial uses of preimplantation genetic diagnosis (PGD) involves selecting embryos with a specific tissue type so that the child to be born can act as a donor to an existing sibling who requires a haematopoietic stem cell transplant. PGD with HLA tissue typing is used to select embryos that are free of a familial genetic disease and that are also a tissue match for an existing sibling who requires a transplant. Preimplantation HLA tissue typing occurs when parents select embryos that are not at risk of a familial genetic disease to be a match for an existing sibling who requires a transplant. In Victoria, Australia, applications to use PGD with HLA tissue typing are reviewed by the Infertility Treatment Authority on a case by case basis. Preimplantation HLA tissue typing is prohibited prima facie because the embryo to be tested would not be at risk for a genetic abnormality or disease. Arguments for or against the use of PGD/HLA tissue typing are based on several key issues including the commodification and welfare of the donor child. This essay aims to show that that the same arguments apply to both PGD with HLA tissue typing and Preimplantation HLA tissue typing, and that the policy distinction between the two procedures is therefore ethically inconsistent.  相似文献   

8.
在体外受精过程中,通过胚胎植入前遗传性诊断(PGD)对有遗传风险患者的胚胎进行植入前活检和遗传学分析,选择无遗传性疾病的胚胎植入子宫,而PGD诊断异常的胚胎则会被丢弃。本研究尝试将PGD异常胚胎用于分离人胚胎干细胞,以获得携带遗传缺陷的人胚胎干细胞系。利用荧光原位杂交技术对第3-5天胚胎进行PGD检测,结果异常的胚胎进一步用于分离获取胚胎干细胞系,然后对h ES细胞系进行核型及干细胞表面标记、多能性基因表达、端粒酶活性以及分化能力等特征性鉴定。总共从13个PGD异常胚胎中分离获得8个人胚胎干细胞系,建系效率为61.5%,其中1个核型正常,5个核型异常。说明利用PGD异常胚胎可以获得携带遗传缺陷的人胚胎干细胞系,不仅为评估PGD技术临床结论的准确性提供了一种新方法,更重要的是为研究各种遗传性疾病的发病机理提供了有效的细胞模型。  相似文献   

9.
Since the early 1990s, preimplantation genetic diagnosis (PGD) has been expanding in scope and applications. Selection of female embryos to avoid X-linked disease was carried out first by polymerase chain reaction, then by fluorescence in situ hybridization (FISH), and an ever-increasing number of tests for monogenic diseases have been developed. Couples with chromosome rearrangements such as Robertsonian and reciprocal translocations form a large referral group for most PGD centers and present a special challenge, due to the large number of genetically unbalanced embryos generated by meiotic segregation. Early protocols used blastomeres biopsied from cleavage-stage embryos; testing of first and second polar bodies is now a routine alternative, and blastocyst biopsy can also be used. More recently, the technology has been harnessed to provide PGD-AS, or aneuploidy screening. FISH probes specific for chromosomes commonly found to be aneuploid in early pregnancy loss are used to test blastomeres for aneuploidy, with the aim of replacing euploid embryos and increasing pregnancy rates in groups of women who have poor IVF success rates. More recent application of PGD to areas such as HLA typing and social sex selection have stoked public controversy and concern, while provoking interesting ethical debates and keeping PGD firmly in the public eye.  相似文献   

10.
Although co-amplification of polymorphic microsatellite markers is the current gold standard for preimplantation genetic diagnosis (PGD) of single-gene disorders (SGD), this approach can be hampered by the lack of availability of informative markers. We recently (2011) devised a novel in-house assay for PGD of aromatic l-amino acid decarboxylase deficiency, based on an amplification refractory mutation system and quantitative PCR (ARMS-qPCR). The objective of the present study was to verify ARMS-qPCR in a cohort of 20 PGD cycles with a diverse group of SGDs (15 couples at risk for 10 SGDs). Day-3 cleavage-stage embryos were subjected to biopsy and genotyping, followed by fresh embryo transfer (FET). The diagnostic rate was 82.9%; unaffected live births were achieved in 9 of 20 FET cycles (45%), with only one false negative (among 54 transferred embryos). Overall, the ARMS-qPCR had frequent allele-dropout (ADO), rendering it inappropriate as the sole diagnostic method (despite a favorable live-birth rate). Regardless, it has the potential to complement the current gold-standard methodology, especially when trophectoderm biopsy becomes a preferred option and genotyping needs to be timely enough to enable FET.  相似文献   

11.
The back door has been proposed to be an exit pathway from the myosin active site for phosphate (P(i)) generated by adenosine 5'-triphosphate hydrolysis. We used molecular dynamics simulations to investigate the interaction of P(i) with the back door and the plausibility of P(i) release via this route. Molecular dynamics simulations were performed on the Dictyostelium motor domain with bound Mg.adenosine 5'-diphosphate (ADP) and P(i), modeled upon the Mg.ADP.BeF(x) and Mg.ADP.V(i) structures. Simulations revealed that the relaxation of ADP and free P(i) from their initial positions reduced the diameter of the back door via motions of switch 1 and switch 2 located in the upper and lower 50-kDa subdomains, respectively. In neither simulation could P(i) freely diffuse out the back door. Water molecules, however, could flux through the back door in the Mg.ADP.BeF(x)-based simulation but not in the Mg.ADP.V(i)-based simulation. In neither structure was water observed fluxing through the main (front door) entrance. These observations suggest that the ability of P(i) to leave via the back door is linked tightly to conformational changes between the upper and lower 50-kDa subdomains. The simulations offer structural explanations for (18)O-exchange with P(i) at the active site, and P(i) release being the rate-limiting step in the myosin adenosine 5'-triphosphatase.  相似文献   

12.
We introduced a novel approach for the establishment of genetically modified hESC lines, and have shown that mutant hESC may be derived from affected embryos after preimplantation genetic diagnosis (PGD) screening for a particular single gene disorder. Here we describe the procedure of embryo and cell manipulation, their diagnostic layout, and the analysis of the efficiency of embryo development and hESC establishment, as well as the developments for hESC derivation in animal-product-free conditions. Our study shows that a high efficiency of hESC derivation (50%) is especially crucial when working with rare and unique resources such as genetically screened embryos necessary for the derivation of hESC lines that represent specific genetic diseases.  相似文献   

13.
Preimplantation genetic diagnosis (PGD) is a genetic screening of embryos conceived with assisted reproduction technologies (ART). A single blastomere from an early-stage embryo is removed and molecular analyses follow to identify embryos carrying genetic defects. PGD is considered highly successful for detecting genetic anomalies, but the effects of blastomere biopsy on fetal development are understudied. We aimed to determine whether single blastomere removal affects steroid homeostasis in the maternal-placental-fetal unit during mouse pregnancy. Embryos generated by in vitro fertilization (IVF) were biopsied at the four-cell stage, cultured to morula/early blastocyst, and transplanted into the oviducts of surrogate mothers. Nonbiopsied embryos from the same IVF cohorts served as controls. Cesarean section was performed at term, and maternal and fetal tissues were collected. Embryo biopsy affected the levels of steroids (estradiol, estrone, and progesterone) in fetal and placental compartments but not in maternal tissues. Steroidogenic enzyme activities (3beta-hydroxysteroid dehydrogenase, cytochrome P450 17alpha-hydroxylase, and cytochrome P450 19) were unaffected but decreased activities of steroid clearance enzymes (uridine diphosphate-glucuronosyltransferase and sulfotransferase) were observed in placentas and fetal livers. Although maternal body, ovarian, and placental weights did not differ, the weights of fetuses derived from biopsied embryos were lower than those of their nonbiopsied counterparts. The data demonstrate that blastomere biopsy deregulates steroid metabolism during pregnancy. This may have profound effects on several aspects of fetal development, of which low birth weight is only one. If a similar phenomenon occurs in humans, it may explain low birth weights associated with PGD/ART and provide a plausible target for improving PGD outcomes.  相似文献   

14.
Preimplantation genetic diagnosis (PGD) allows identifying genetic traits in early embryos. Because in some equine breeds, like Polo Argentino, females are preferred to males for competition, PGD can be used to determine the gender of the embryo before transfer and thus allow the production of only female pregnancies. This procedure could have a great impact on commercial embryo production programs. The present study was conducted to adapt gender selection by PGD to a large-scale equine embryo transfer program. To achieve this, we studied (i) the effect on pregnancy rates of holding biopsied embryos for 7 to 10 hours in holding medium at 32 °C before transfer, (ii) the effect on pregnancy rates of using embryos of different sizes for biopsy, and (iii) the efficiency of amplification by heating biopsies before polymerase chain reaction. Equine embryos were classified by size (≤300, 300–1000, and >1000 μm), biopsied, and transferred 1 to 2 or 7 to 10 hours after flushing. Some of the biopsy samples obtained were incubated for 10 minutes at 95 °C and the rest remained untreated. Pregnancy rates were recorded at 25 days of gestation; fetal gender was determined using ultrasonography and compared with PGD results. Holding biopsied embryos for 7 to 10 hours before transfer produced pregnancy rates similar to those for biopsied embryos transferred within 2 hours (63% and 57%, respectively). These results did not differ from pregnancy rates of nonbiopsied embryos undergoing the same holding times (50% for 7–10 hours and 63% for 1–2 hours). Pregnancy rates for biopsied and nonbiopsied embryos did not differ between size groups or between biopsied and nonbiopsied embryos within the same size group (P > 0.05). Incubating biopsy samples for 10 minutes at 95 °C before polymerase chain reaction significantly increased the diagnosis rate (78.5% vs. 45.5% for treated and nontreated biopsy samples respectively). Gender determination using incubated biopsy samples matched the results obtained using ultrasonography in all pregnancies assessed (11/11, 100%); untreated biopsy samples were correctly diagnosed in 36 of 41 assessed pregnancies (87.8%), although the difference between treated and untreated biopsy samples was not significant. Our results demonstrated that biopsied embryos can remain in holding medium before being transferred, until gender diagnosis by PGD is complete (7–10 hours), without affecting pregnancy rates. This simplifies the management of an embryo transfer program willing to incorporate PGD for gender selection, by transferring only embryos of the desired sex. Embryo biopsy can be performed in a clinical setting on embryos of different sizes, without affecting their viability. Additionally, we showed that pretreating biopsy samples with a short incubation at 95 °C improved the overall efficiency of embryo sex determination.  相似文献   

15.
This paper reports the birth of the first fourteen infants conceived after preimplantation genetic diagnosis (PGD) in our unit. Fifty-nine couples were enrolled between January 2000 and July 2001. They had a total of 71 oocyte pick-up cycles. The collected oocytes were inseminated by intracytoplasmic sperm injection. The resulting embryos were biopsied on the third day of development and genetic analysis was performed on the same day. Most of the embryo transfers were carried out on the fourth day. The 71 oocyte pick-up cycles yielded 872 oocytes of which 731 were suitable for intacytoplasmic sperm injection. Among the 505 embryos obtained, 421 embryos were biopsied and genetic diagnosis was performed for 312 (74%) of them. 127 embryos were transferred during 58 transfer procedures. There were 18 biochemical and 12 ongoing (7 singles, 4 twins and 1 triple) pregnancies. Sixteen infants have been born and 2 are expected. PGD now constitutes an alternative for couples at risk of transmission of a serious and incurable genetic disease.  相似文献   

16.
The cooperatively breeding white-throated magpie-jay (Calocitta formosa) uses a variety of foraging tactics to find, harvest, and process food. Members of territorial groups forage together and may gain information about how to acquire food by observing each other. A field experiment was performed to determine whether a novel skill, door opening to gain access to food, was more rapidly acquired by members of groups in which a trained individual performed the skill. A higher proportion of jays in groups with behavioural ‘models’ (trained birds that opened doors in the presence of group members) acquired the door-opening skill than those groups without models. Young birds acquired the behaviour more frequently than older individuals. Aggressive behaviour at feeders may have affected the spread of the behaviour by reducing the likelihood that individuals performed the behaviour in the presence of other group members but may also have encouraged subordinate individuals to attempt door opening rather than ‘scrounge’.  相似文献   

17.
Recent reports of strong selection of mitochondrial DNA (mtDNA) during transmission in animal models of mtDNA disease, and of nuclear transfer in both animal models and humans, have important scientific implications. These are directly applicable to the genetic management of mtDNA disease. The risk that a mitochondrial disorder will be transmitted is difficult to estimate due to heteroplasmy—the existence of normal and mutant mtDNA in the same individual, tissue, or cell. In addition, the mtDNA bottleneck during oogenesis frequently results in dramatic and unpredictable inter-generational fluctuations in the proportions of mutant and wild-type mtDNA. Pre-implantation genetic diagnosis (PGD) for mtDNA disease enables embryos produced by in vitro fertilization (IVF) to be screened for mtDNA mutations. Embryos determined to be at low risk (i.e., those having low mutant mtDNA load) can be preferentially transferred to the uterus with the aim of initiating unaffected pregnancies. New evidence that some types of deleterious mtDNA mutations are eliminated within a few generations suggests that women undergoing PGD have a reasonable chance of generating embryos with a lower mutant load than their own. While nuclear transfer may become an alternative approach in future, there might be more difficulties, ethical as well as technical. This Review outlines the implications of recent advances for genetic management of these potentially devastating disorders.  相似文献   

18.
Preimplantation genetic diagnosis (PGD) is an evolving technique that provides a practical alternative to prenatal diagnosis and termination of pregnancy for couples who are at substantial risk of transmitting a serious genetic disorder to their offspring. Samples for genetic testing are obtained from oocytes or cleaving embryos after in vitro fertilization. Only embryos that are shown to be free of the genetic disorders are made available for replacement in the uterus, in the hope of establishing a pregnancy. PGD has provided unique insights into aspects of reproductive genetics and early human development, but has also raised important new ethical issues about assisted human reproduction.  相似文献   

19.
Preimplantation genetic diagnosis makes it possible to detect some genetic disorders in embryos in vitro before they are transferred to the uterus. Using this technique, there is an opportunity for couples who have an increased risk of transmitting severe genetic disorders to their offspring to reduce this risk by >95%. By doing PGD, abortions at a later stage can be avoided.  相似文献   

20.
Is it necessary to analyze two blastomeres in preimplantation genetic diagnosis (PGD) by fluorescence in situ hybridization (FISH) or is one blastomere enough, as suggested by some teams? We analyzed the sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), false positives (FP), false negatives (FN), and the efficiency (Eff) of FISH performed on one (Group I) or two (Group II) blastomeres. Ninety embryos were analyzed (day 3), 19 blastocysts were replaced (day 5), 64 embryos were reanalyzed (day 5), (Group I = 23; Group II = 41). No differences were observed between the two groups for all of the parameters considered, but one false negative was observed in Group I. Furthermore, two embryos from Group II, which had a discordant diagnosis at PGD (one blastomere being normal and one abnormal), were read as abnormal after reanalysis. The accidental biopsy of the normal blastomere could have lead to the selection of these 2 embryos for transfer, causing a misdiagnosis rate of 4.8%. We conclude that embryo reanalysis is a useful tool to test the reliability of PGD in each laboratory: that PGD on two blastomeres is safer because the practice of PGD on one blastomere can result in a false-negative misdiagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号