首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
为了研究葡萄糖苷酶催化三七提取物的水解产物中主要皂苷成分。采用色谱法从三七提取物水解产物中分离纯化得到11个皂苷成分。利用波谱解析确定了它们的结构,分别鉴定为20(S)-原人参二醇-20-O-β-D-吡喃木糖基-(1→6)-β-D-吡喃葡萄糖基-(1→6)-β-D-吡喃葡萄糖苷(1),以及10个已知的皂苷成分分别为:人参皂苷compound K(2)、3β,12β,20(S),25-四羟基达玛-23-烯-20-O-β-D-吡喃葡萄糖苷(3)、3β,20(S)-二羟基达玛-24-烯-12β,23β-环氧-20-O-β-D-吡喃葡萄糖苷(4)、3β,12β,20(S)-三羟基-25-过氧羟基达玛-23-烯-20-O-β-D-吡喃葡萄糖苷(5)、人参皂苷F1(6)、人参皂苷Rg1(7)、人参皂苷Rg2(8)、人参皂苷Mc(9)、20(S)-原人参二醇-3-O-β-D-吡喃木糖基-(1→2)-β-D-吡喃葡萄糖基-20-O-β-D-吡喃葡萄糖苷(10)和人参皂苷Re(11)。其中化合物1为新化合物,化合物3~5和10为首次从三七中被分离得到。  相似文献   

2.
人参茎叶提取物经β-糖苷酶催化水解后,经硅胶柱和RP-18柱反复层析纯化得8个化合物。通过波谱图分析及结合文献数据,分别鉴定为20(S)-达玛烷-3β,6α,12β,20,25-五醇(1)、人参皂苷compound K(2)、人参皂苷F1(3)、人参皂苷Rh13(4)、人参皂苷Rg2(5)、3β,20(S)-二羟基达玛烷-24-烯-12β,23β-环氧-20-O-β-D-吡喃葡萄糖苷(6)、人参皂苷Rg1(7)和人参皂苷Re(8)。其中化合物1为新的达玛烷皂苷元。化合物2为分离到仅有的原人参二醇型皂苷,表明该β-糖苷酶高效转化人参茎叶的原人参二醇型皂苷为人参皂苷compound K。  相似文献   

3.
采用溶剂提取及柱色谱等方法,首次对瑞香狼毒Stellera chamaejasme L.的正丁醇萃取部位进行系统研究,分离得到6个苯丙素类化合物,并运用UV、1H NMR、13C NMR等现代波谱技术依次鉴定为伞形花内酯7-O-β-D-吡喃木糖(1→6)-β-D-吡喃葡萄糖苷(1),芥子醇1,3’-双-O-β-D-吡喃葡萄糖苷(2),紫丁香苷(3),(+)-落叶松树脂醇4,4’-O-β-D-吡喃葡萄糖苷(4),(+)-松树脂醇4,4’-O-双-β-D-吡喃葡萄糖苷(5)和(+)-丁香树脂醇-双-O-β-D-吡喃葡萄糖苷(6)。其中,化合物4、6为首次从该药材中分离得到。  相似文献   

4.
排风藤中皂苷类化学成分研究   总被引:1,自引:0,他引:1  
从茄属植物排风藤的全草中分离得到了4个皂苷类化合物,经鉴定分别为:25R-螺甾-3-O-[β-D-吡喃木糖基-(1→3)]-O-β-D-吡喃葡萄糖基-(1→2)-O-β-D-吡喃葡萄糖基-(1→4)-O-β-D-吡喃半乳糖苷(1),5α,25R-螺甾-3-O-[β-D-吡喃木糖基-(1→3)]-O-β-D-吡喃葡萄糖基-(1→2)-O-β-D-吡喃葡萄糖基-(1→4)-O-β-D-吡喃半乳糖苷(2),22α,25R-26-O-β-D-吡喃葡萄糖基-22-羟基-呋甾-△5-3β,26-二醇-3-O-β-D-吡喃葡萄糖基-(1→2)-O-[β-D-吡喃木糖基-(1→3)]-O-β-D-吡喃葡萄糖基-(1→4)-O-β-D-吡喃半乳糖苷(3),22α,25R-26-O-β-D-吡喃葡萄糖基-22-羟基-呋甾-△5-3β,26-二醇-3-O-β-D-吡喃葡萄糖基-(1→2)-O-β-D-吡喃葡萄糖基-(1→4)-O-β-D-吡喃葡萄糖苷(4).化合物1-4均为首次从排风藤中分离得到.  相似文献   

5.
为了解幌伞枫(Heteropanax fragrans)的药理活性化学基础,从其叶的乙醇提取物中分离得到8个化合物,经波谱分析分别鉴定为:(7S,8R)-蛇菰脂醛素-4-O-β-D-吡喃葡萄糖苷(1)、4β,10α-香木兰烷二醇(2)、原儿茶酸(3)、3′-甲氧基-槲皮素-3-O-β-D-吡喃葡萄糖苷(4)、山柰酚-3-O-β-D-吡喃葡萄糖苷(5)、槲皮素-3-O-β-D-吡喃葡萄糖苷(6)、槲皮素-3-O-β-D-芸香糖苷(7)和山柰酚-3-O-β-D-芸香糖苷(8)。这8个化合物均为首次从幌伞枫中分离得到。  相似文献   

6.
为了明确展毛野牡丹的化学成分,该研究采用Diaion HP20SS、MCI gel、Sephadex LH-20柱层析和反相高效液相色谱等方法,对展毛野牡丹根和茎的醇提物分别进行了分离纯化。结果表明:从展毛野牡丹中分离得到11个化合物,它们的结构经波谱数据分析和鉴定。它们分别是4-羟基-3-甲氧基苯酚1-O-β-D-(6'-O-没食子酰)-吡喃葡萄糖苷(1)、3,4-二羟基苯乙醇4-O-β-D-(6'-O-没食子酰基)-吡喃葡萄糖苷(2)、龙胆酸5-O-β-D-(6'-O-没食子酰基)-吡喃葡萄糖苷(3)、2,4,6-三甲氧基苯酚1-O-β-D-(6'-O-没食子酰)-吡喃葡萄糖苷(4)、甲基6-O-没食子酰基-β-D-吡喃葡萄糖苷(5)、乙基6-O-没食子酰基-β-D-吡喃葡萄糖苷(6)、6'-O-没食子酰基黑樱苷(7)、没食子酸甲酯(8)、没食子酸乙酯(9)、2,6-二甲氧基对苯二酚4-O-β-D-吡喃葡萄糖苷(10)、2-甲氧基对苯二酚4-O-β-D-吡喃葡萄糖苷(11)。所有化合物均为首次从展毛野牡丹中分离得到,化合物2-7、10和11为首次从该属植物中分离得到。  相似文献   

7.
太白米中的甾体生物碱苷   总被引:1,自引:0,他引:1  
对太白米的叶、大鳞茎和小鳞茎进行了化学成分系统预试,从大鳞茎中分离得到4个甾体生物碱苷,通过对其IR、FABMS、SIMS、1^HNMR、13^CNMR、DEPT、HMQC、HMBC和1^H-1^H COSY的综合解析鉴定了其中3个结构,它们分别为茄次碱-3-O-α-L-吡喃鼠李糖-(1→2)-β-D-吡喃葡萄糖苷(Ⅱ)、茄次碱-3-O-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖(1→4)]-β-D-吡喃葡萄糖苷(Ⅲ)和茄次碱-3-O-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖-(1→3)-β-D-吡喃葡萄糖(1→4)]-β-D-吡喃葡萄糖苷(IV)。  相似文献   

8.
为研究刺桑(Taxotrophis ilicifolia)皮正丁醇部位的化学成分,该研究采用硅胶、ODS、Sephadex LH-20、反相半制备高效液相等色谱法对刺桑皮正丁醇萃取部位进行分离纯化,并综合理化性质及波谱数据鉴定其化合物的结构。结果表明:从刺桑皮正丁醇萃取物中分离得到16个化合物,分别鉴定为icariside E5 (1)、裂环异落叶松脂醇-9-O-β-吡喃葡萄糖苷(2)、2,4,6-三甲氧基苯酚-1-O-β-D-葡萄糖苷(3)、9-O-β-glucopyranosyl trans-cinnamyl alcohol (4)、3,4,5-三甲氧基苯酚-1-O-β-呋喃芹糖基-(1″→6′)-β-吡喃葡萄糖苷(5)、3-羟基-4,5-二甲氧基苯酚-β-D-吡喃葡萄糖苷(6)、2,6-二甲氧基-4-羟基苯酚-1-O-β-D-吡喃葡萄糖苷(7)、isotachioside (8)、ficuscarpanoside A (9)、uridine (10)、methyl syringate 4-O-β-D-glucopyranoside (11)、3,4,5-三甲氧基苯酚-β-D-吡喃...  相似文献   

9.
黄花倒水莲化学成分研究   总被引:5,自引:0,他引:5  
从黄花倒水莲(Polygda aureocauda Dunn.)根中分离得到七个化合物,经理化和光谱分析鉴定为豆甾-7,(反)22-二烯-3-醇(1)、豆甾-7,(反)22-二烯-3-酮(2)、1,8-羟基-3,7-二甲氧基Shan酮(3)、软脂酸单甘油酯(4)和3-O-[4-O-(α-L-吡喃鼠李糖-)-阿魏酰]-β-D-呋喃果糖-(2→1)-(4,6-二-O-苯甲酰)-α-D-吡喃葡萄糖苷(5)、1-O-β-D-吡喃葡萄糖-(2S,3S,4R,8E)-2-[(2’R)-2’-羟基棕榈酰胺]-8-十八烯-1,3,4-三醇(6)和1-O-β-D吡喃葡萄糖-(2S,3S,4R,8E)-2-[(2’R)-2'-羟基二十四烷酰胺]-8-十八烯-1,3,4-三醇(7)。化合物2—4.7为首次从该植物中分离得到。  相似文献   

10.
从毛叶飞蛾藤(Porana racemosa Roxb.)全草的95%乙醇提取物中分离并鉴定了11个化合物,其中一新的C30甾体化合物鉴定为(22E,24ξ)-24-正丙基胆甾-7,22-二烯-3β-醇(飞蛾藤素,1).其余10个已知化合物分别为东莨菪素(2)、东莨菪苷(3)、伞形华内酯(4)、β-D-甲基吡喃果糖苷(5)、丁香脂素4-O-β-D-吡喃葡萄糖苷(6)、斛皮素-3-O-β-D-吡喃葡萄糖苷(7)、斛皮素-3-O-α-L-吡喃鼠李糖苷(8)、异泽兰黄素(9)、山奈素-3-O-β-D-吡喃葡萄糖苷(10)和(E)-N-2-(2,3-二羟基苯基)乙基肉桂酰胺(11).  相似文献   

11.
三七叶、人参叶和西洋参叶其皂苷类成分相近,但专属性成分各异,皂苷类成分的分布比例也各不相同。本文建立了HPLC-UV法测定上述皂苷成分的方法,经过方法学考察,各种皂苷成分精密度好、加样回收率高,方法可靠。11种皂苷成分总含量顺序为:西洋参叶>人参叶>三七叶;二醇组皂苷成分含量:西洋参叶>三七叶>人参叶;三醇组皂苷成分含量:人参叶>西洋参叶>三七叶。西洋参叶中二醇组皂苷和人参叶中三醇组皂苷含量明显高于其他。西洋参叶中人参皂苷Rb3和Rd的含量之和占11种皂苷成分的60%以上。鉴于其中人参皂苷的高含量,三七叶、人参叶和西洋参叶应该作为皂苷来源得到充分利用;不同的皂苷成分有不同的药理活性,应基于它们的皂苷组成和比例选择性进行研究和开发。  相似文献   

12.
According to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4'-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4'-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4' position by Gibberella fujikuroi SH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4'-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4'-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position by Alternaria alternata S-f6, which was screened out from the gathered Dysosma versipellis plants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4'-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) by Alternaria alternata S-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC(50)] of 529 μM), the EC(50) of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC(50) of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., log P = 0.34), the water solubility of 4-TMP-DMEP (i.e., log P = 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work.  相似文献   

13.
Immunochemical and genetic methods have been developed in order to distinguish Panax spp. With the aim of establishing immunochemical methods, two hybridomas (3H4 and 5H8), each secreting a monoclonal antibody (MAb) against proteins of Panax ginseng, were prepared by fusing splenocytes immunized with two kinds of ginseng water-soluble fractions and a hypoxanthine-thymidine-aminopterin-sensitive mouse myeloma cell line, P3-X63-Ag8-U1. MAb 3H4 cross-reacted with four Panax spp., whereas the MAb 5H8 cross-reacted with P. ginseng in the enzyme-linked immunosorbent assay (ELISA). ELISA and western blotting methods using a ginseng water-soluble fraction as the solid-phase antigen were developed for the unambiguous authentication of P. ginseng. A combination of random amplified polymorphic DNA (RAPD) and eastern blotting analyses using anti-ginsenoside Rb1 and Rgl monoclonal antibodies was used for the identification of P. notoginseng, P. quinquefolius and P. japonicus. RAPD can be used to differentiate the species of Panax from each other. An important parameter used for differentiating P. notoginseng is the absence of ginsenoside Rc in the extract of P. notoginseng with eastern blotting. The combination of these methods enabled a reliable identification of Panax spp.  相似文献   

14.
Aims: Development and optimization of an efficient and inexpensive biotransformation process for ginsenoside compound K production by Paecilomyces bainier sp. 229. Methods and Results: We have determined the optimum culture conditions required for the efficient production of ginsenoside compound K by P. bainier sp. 229 via biotransformation of ginseng saponin substrate. The optimal medium constituents were determined to be: 30 g sucrose, 30 g soybean steep powder, 1 g wheat bran powder, 1 g (NH4)2SO4, 2 g MgSO4·7H2O and 1 g CaCl2 in 1 l of distilled water. An inoculum size of 5–7·5% with an optimal pH range of 4·5–5·5 was essential for high yield. Conclusions: The Mol conversion quotient of ginseng saponins increased from 21·2% to 72·7% by optimization of the cultural conditions. Scale‐up in a 10 l fermentor, under conditions of controlled pH and continuous air supply in the optimal medium, resulted in an 82·6% yield of ginsenoside compound K. Significant and Impact of the Study: This is the first report on the optimization of culture conditions for the production of ginsenoside compound K by fungal biotransformation. The degree of conversion is significantly higher than previous reports. Our method describes an inexpensive, rapid and efficient biotransformation system for the production of ginsenoside compound K.  相似文献   

15.
The total saponin extract from the dried roots of Panax notoginseng (Burk.) F. H. Chen possesses immunological-adjuvant activities. Guided by in vivo immunological tests, further study on this fraction afforded three active dammarane-type saponins. Their structures were determined on the basis of chemical evidence and extensive spectroscopic methods, including 1D- and 2D-NMR. The novel compound (20S)-protopanaxatriol 20-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside (1), and the two known compounds ginsenoside Rh4 (2) and notoginsenoside K (3) exhibited immunological-adjuvant activities on the humoral immune responses of ICR mice against ovalbumin (OVA).  相似文献   

16.
From the roots of some Mexican Salvia species, classified in subgenus Jungia, several diterpenoids belonging to abietane (i.e., 3-7), salvifolane (9-->20,10-->6)-diabeoabietane) (i.e., 2), and totarane (i.e., 10) carbocyclic skeletons were isolated together with two 20-nor- and one 6,7-secoabietane derivatives, 1 and 9, and 8, respectively. While compounds 2-10 were previously known from different sources, compound 1 is a new 20-norabietane derivative, whose structure was deduced by spectroscopic means and confirmed by X-ray-diffraction analysis. The phytogeographical significance of the distribution of 20-norabietanic diterpenoids in the genus suggested an evolutionary link between the Chinese and New-World Salvias. Compounds 2 and 8 were tested for cell-growth inhibition activity against several human cancer cell lines and human normal lymphocytes, while 2 showed a moderate cytotoxic activity, 8 exhibited a moderate yet selective activity against leukemia cell line.  相似文献   

17.
Cheng LQ  Na JR  Bang MH  Kim MK  Yang DC 《Phytochemistry》2008,69(1):218-224
Ginseng saponin, the most important secondary metabolite in ginseng, has various pharmacological activities. Many studies have been directed towards converting major ginsenosides to the more active minor ginsenoside, Rg3. Due to the difficulty in preparing ginsenoside Rg3 enzymatically, the compound has been mainly produced by either acid treatment or heating. A microbial strain GS514 was isolated from soil around ginseng roots in a field and used for enzymatic preparation of the ginsenoside Rg3. Blast results of the 16S rRNA gene sequence of the strain GS514 established that the strain GS514 belonged to the genus Microbacterium. Its 16S rRNA gene sequence showed 98.7%, 98.4% and 96.1% identity with those of M. esteraromaticum, M. arabinogalactanolyticum and M. lacticum. Strain GS514 showed a strong ability to convert ginsenoside Rb1 or Rd into Rg3. Enzymatic production of Rg3 occurred by consecutive hydrolyses of the terminal and inner glucopyranosyl moieties at the C-20 carbon of ginsenoside Rb1 showing the biotransformation pathway: Rb1-->Rd-->Rg3.  相似文献   

18.
The developed tandem biotransformation process for the directional biosynthesis of a designed compound 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP) by Alternaria alternata S-f6 was systematically optimized. 28 °C of culture temperature and 120 rpm of rotary shaker speed were suitable for the accumulation of 4-TMP-DMEP. The production (i.e., 11.1 ± 1.4 mg/L) of 4-TMP-DMEP was remarkably improved by using an initial yeast extract concentration of 2.5 g/L. 2.0 g/L of Span 80 was beneficial for the 4-TMP-DMEP production (i.e., 25.0 ± 1.5 mg/L). Furthermore, the 4-TMP-DMEP production was remarkably improved by one pulse feeding of 50 mg/L of DMEP on day 6 and two pulse feedings of 40 mg/L of TMP on days 8 and 14 when its residual level was below 50 mg/L and 10 mg/L, respectively. The 4-TMP-DMEP production of 45.1 ± 1.6 mg/L was obtained in the fed-batch biotransformation process, which was enhanced by 726% and 256%, comparing to that (i.e., 5.4 ± 0.4 mg/L and 0.9 mg/L/day) obtained in the batch biotransformation before optimization.  相似文献   

19.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

20.
In our search for immune stimulating materials from natural source, bioassay-guided fractionation of a methanol extract of Panax ginseng leaves led to the isolation of three dammarane triterpenes (13), including two previously unknown compounds 27-demethyl-(E,E)-20(22),23-dien-3β,6α,12β-trihydroxydammar-25-one (1) and 3β,20(S)-dihydroxydammar-24-en-12β,23β-epoxy-20-O-β-d-glucopyranoside (2). Their structures were elucidated on the basis of spectroscopic methods, chemical transformation, and by the comparison with those of literature data. Compounds 13 significantly increased interleukin-12 expression in LPS-activated mouse peritoneal macrophage at a concentration of 100 ng/mL. Furthermore, compound 1 strongly increased the Th1 response-mediated cytokine IL-2, and decreased Th2 response-mediated cytokines IL-4 and IL-6 expression at 100 ng/mL on ConA-activated splenocytes. This study indicated that compound 1 showed a better effect on cellular immunity, and provided new chemical entities as promising lead compounds for the treatment of cellular immunity-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号