首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
C族GPCRs是体内重要的受体,参与众多重要的生理和病理进程,并具有复杂的结构和激活机制。在体内该族受体形成组成性的二聚体并具有七螺旋跨膜结构(heptahelical transmembrane domain,HD)、捕蝇草模块(venus flytrap domain,VFT)和半胱氨酸富集区(cysteine-rich domain,CRD)。本文系统介绍了近年来CRD单体的序列和结构解析,以及参与受体激活过程的机制研究的历程和进展。同时也展望了这些基础研究成果对于开发新的更具有成药性的以C族GPCRs为靶点的变构剂的指导意义。  相似文献   

2.
C族G蛋白偶联受体(G protein coupled receptor,GPCR)具有七螺旋跨膜域(heptahelical transmembranedomain,HD)、捕蝇夹域(venusflytrapdomain,VFT)和半胱氨酸富集域(cysteine-rich domain,CRD)等功能域,并在体内组成性形成二聚体。该文介绍C族G蛋白偶联受体激活进程中各功能域的构象变化,以及由此产生的构象学效应。  相似文献   

3.
G蛋白偶联受体的结构与功能   总被引:7,自引:0,他引:7  
G蛋白偶联受体(Gprotein-coupled receptor,GPCR)是具有7个跨膜螺旋的蛋白质受体,根据其序列的相似性以及与配基的结合情况,共分为5个亚家族,是人体内最大的蛋白质家族,也是重要的药物靶标。二聚体或寡聚体的形成,以及G蛋白偶联受体多元素参与的信号网络传递模式的研究,打破了传统的配基→G蛋白偶联受体→G蛋白→效应器的这种单一的线性信号传递模式,它的结构与功能的研究对于新药的开发、研制以及推动医药领域的发展起着举足轻重的作用。  相似文献   

4.
GABA水属于c族G蛋白偶联受体,是中枢神经细胞重要的抑制性神经递质受体。在体内GABAa_R由GBl和GB2两个基因编码,1998年以来研究者证实GABABR是由GBl和GB2形成的异二聚体,但近年来的研究表明,GBl也可以单独形成GBl-GBl同二聚体并在体内行使功能。本文系统介绍了GBl亚基的分类,在GB2存在或不存在时的表达,以及在GABAaR异二聚体和GBl.GBl同二聚体激活过程中所扮演的角色和生理功能;同时也展望了这些研究成果对于基础研究和药学研究的意义。关键词:GABA,~R:GBl:GB2:GBl.GBl同二聚体:激活机制  相似文献   

5.
LRP16基因是macro domain家族成员之一,C末端含有唯一的1个保守的功能结构域. 既往研究表明,该基因具有雌激素反应性,并可通过与雌激素受体α (ERα)相互作用调控其转录活性.近期我研究组发现,LRP16可与雄激素受体(AR)的共激活因子ART-27相互作用.本研究首先通过GST pull-down方法验证LRP16/ART-27/AR三者之间相互作用关系,并用免疫共沉淀实验明确了LRP16与AR存在直接的相互作用,且这种相互作用并不依赖于ART-27的存在;采用GST pull-down进一步明确LRP16与AR相互作用的结构域.结果发现,LRP16通过C端的macro domain结构域与AR的LBD域相互作用;鉴于核受体家族有较高程度的氨基酸序列保守性与功能结构域的相似性,通过GST pull-down验证了LRP16与核受体超家族成员ERβ、GR、PPARα、PPARγ的相互作用,提示LRP16至少还可与ERα以外的5个核受体家族成员相互作用;进一步采用核受体荧光素酶报告基因转染细胞,通过检测荧光素酶活性证实LRP16可增强AR、GR、ERβ、PPARα、PPARγ的转录激活活性.本研究初步证实,macro domain家族成员LRP16可与多个核受体相互作用,并增强其转录激活活性,是核受体家族的共激活因子,为进一步研究LRP16在核受体转录调控中的生理病理学功能奠定基础.  相似文献   

6.
GABABR属于C族G蛋白偶联受体,是中枢神经细胞重要的抑制性神经递质受体.在体内GABABR由GB1和GB2两个基因编码,1998年以来研究者证实GABABR是由GB1和GB2形成的异二聚体,但近年来的研究表明,GB1也可以单独形成GB1 -GB1同二聚体并在体内行使功能.本文系统介绍了GB1亚基的分类,在GB2存在或不存在时的表达,以及在GABABR异二聚体和GB1-GB1同二聚体激活过程中所扮演的角色和生理功能;同时也展望了这些研究成果对于基础研究和药学研究的意义.  相似文献   

7.
G蛋白偶联受体二聚化研究进展   总被引:1,自引:0,他引:1  
高灿  池志强 《生命科学》2001,13(5):193-197
G蛋白偶联受体是细胞膜受体最大的家族,参与调节多种生理过程,在信号识别及转导中具有重要作用,传统观点认为G蛋白偶联受体作为单体起作用,近年来,越来越多的证据表明,G蛋白偶联受体不仅能以二聚体形式存在,而且在细胞信号转导中起重要作用,尤其是对阿片受体异源二聚体的研究,推动了这一领域的研究。本文综述了G蛋白偶联受体二聚化研究进展,以及同源和异源二聚体的结构与功能。  相似文献   

8.
ErbB是与癌症有关的典型的受体酪氨酸激酶,正常情况下在器官发生过程中介导细胞间相互作用。ErbB信号转导途径是配基与单体受体酪氨酸激酶结合,通过受体二聚体化和酪氨酸残基的自磷酸化激活细胞质的催化功能,ErbB途径同时具有接收激素,神经转化因子和淋巴因子等的作用,其家族成员已有很多并仍有新的发现。  相似文献   

9.
昆虫鞣化激素及其受体研究进展   总被引:1,自引:0,他引:1  
昆虫通过多种激素调控蜕皮过程,以完成生长发育。鞣化激素与其受体结合,调节昆虫表皮发育及鞣化、翅的伸展和成熟、肌肉收缩、卵子边缘细胞的迁移等,对昆虫的生长发育具有重要作用。鞣化激素由两个亚基(BURS和PBURS)构成,主要在胸腹神经节中合成,两个亚基在结构及其进化上较为保守,氨基酸序列中均含有11个半胱氨酸残基,在某些特定的组织中具有独立的生物学活性。鞣化激素受体为G蛋白偶联受体(G protein coupled receptor,GPCR)亚家族成员,富含亮氨酸重复序列,被命名为d LGR2。LGR2的C端区域(含多个丝氨酸残基)和N端区域(富含亮氨酸重复结构域)对于其行使正常功能具有重要作用。鞣化激素释放至血淋巴中与LGR2结合,激活c AMP/PKA信号,使酪氨酸羟化酶(Tyrosinehydroxylase,TH)磷酸化,磷酸化的TH将酪氨酸(Tyrosine)羟化为多巴(DOPA),进而引起表皮的黑化和硬化过程。另外,昆虫鞣化激素亚基形成的同源二聚体可激活转录因子Relish,调控免疫反应。本文结合近年来该领域研究成果,对鞣化激素及其受体的分子结构特性和时空表达进行分析,同时,对其在翅的延展和成熟、表皮黑化和硬化以及免疫等方面的功能研究进展进行综述,为深入认识昆虫鞣化激素及其受体作用机制提供参考。  相似文献   

10.
G蛋白偶联受体(GPCR)是细胞膜上最大的一类受体,其通过构象变化激活下游G蛋白从而介导细胞响应多种来自内源和外界环境中的信号。自GPCR被发现以来,研究者就一直在努力解析GPCR的构象,x射线晶体衍射技术和GPCR蛋白质结晶技术的发展使得越来越多的GPCR单体在静息状态,以及与不同配体甚至G蛋白结合的晶体结构被成功解析。另一方面,FRET和电子显微技术的运用得到了GPCR二聚化和多聚化的多方面证据。本文将结合近年来该领域的进展,对GPCR寡聚体的结构和构象变化予以系统的综述,这些成果为研究GPCR的功能机制及其特异性的靶点药物开发提供了重要的基础。  相似文献   

11.
The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation.  相似文献   

12.
G protein-coupled receptors (GPCRs) accommodate a wide spectrum of activators from ions to glycoprotein hormones. The mechanism of activation for this large and clinically important family of receptors is poorly understood. Although initially thought to function as monomers, there is a growing body of evidence that GPCR dimers form, and in some cases that these dimers are essential for signal transduction. Here we describe a novel mechanism of intermolecular GPCR activation, which we refer to as trans-activation, in the LH receptor, a GPCR that does not form stable dimers. The LH receptor consists of a 350-amino acid amino-terminal domain, which is responsible for high-affinity binding to human CG, followed by seven-transmembrane domains and connecting loops. This seven-transmembrane domain bundle transmits the signal from the extracellular amino terminus to intracellular G proteins and adenylyl cyclase. Here, we show that binding of hormone to one receptor can activate adenylyl cyclase through its transmembrane bundle, intramolecular activation (cis-activation), as well as trans-activation through the transmembrane bundle of an adjacent receptor, without forming a stable receptor dimer. Coexpression of a mutant receptor defective in hormone binding and another mutant defective in signal generation rescues hormone-activated cAMP production. Our observations provide new insights into the mechanism of receptor activation mechanisms and have implications for the treatment of inherited disorders of glycoprotein hormone receptors.  相似文献   

13.
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by collagen. DDR activation does not appear to occur by the common mechanism of ligand-induced receptor dimerization: the DDRs form stable noncovalent dimers in the absence of ligand, and ligand-induced autophosphorylation of cytoplasmic tyrosines is unusually slow and sustained. Here we sought to identify functionally important dimer contacts within the extracellular region of DDR1 by using cysteine-scanning mutagenesis. Cysteine substitutions close to the transmembrane domain resulted in receptors that formed covalent dimers with high efficiency, both in the absence and presence of collagen. Enforced covalent dimerization did not result in constitutive activation and did not affect the ability of collagen to induce receptor autophosphorylation. Cysteines farther away from the transmembrane domain were also cross-linked with high efficiency, but some of these mutants could no longer be activated. Furthermore, the extracellular juxtamembrane region of DDR1 tolerated large deletions as well as insertions of flexible segments, with no adverse effect on activation. These findings indicate that the extracellular juxtamembrane region of DDR1 is exceptionally flexible and does not constrain the basal or ligand-activated state of the receptor. DDR1 transmembrane signaling thus appears to occur without conformational coupling through the juxtamembrane region, but requires specific receptor interactions farther away from the cell membrane. A plausible mechanism to explain these findings is signaling by DDR1 clusters.  相似文献   

14.
This article describes a novel method to access functional interactions of two defective mutant receptors. As a model, luteinizing hormone receptor, a G-protein-coupled receptor, was used by coexpressing two different mutants, one defective in hormone binding and the other defective in signal generation. When these two mutants were coexpressed in a cell, the cell responded to the hormone and induced the hormone action, indicating the interaction of the two receptors and rescue of the activity. The luteinizing hormone receptor consists of a 350-amino-acid extracellular N-terminal domain (exodomain), followed by seven transmembrane domains and connecting loops (endodomain). Hormone binds to the exodomain, whereas hormone signals are generated in the endodomain. Here, we show that binding of hormone to one receptor can activate adenylyl cyclase through its transmembrane bundle, intramolecular activation (cis-activation), as well as intermolecular activation (trans-activation) through the transmembrane bundle of an adjacent receptor, without forming a stable receptor dimer. Our observations provide new insights into the mechanism of receptor activation mechanisms, and have implications for the treatment of inherited disorders of glycoprotein hormone receptors.  相似文献   

15.
The G protein-coupled Ca(2+) receptor (CaR) possesses an approximately 600-residue extracellular domain involved in ligand binding and receptor activation. Based on an alignment of the amino acid sequence of the CaR with that of bacterial periplasmic-binding proteins, the first approximately 530 residues of the extracellular domain are believed to form a domain resembling a bilobed Venus's flytrap (VFT). Four insertions in the CaR sequence that do not align with those of bacterial periplasmic-binding proteins correspond to four loops within lobe I of the VFT. We constructed a series of deletion mutants of these four loops and tested their ability to form fully processed CaR as well as their ability to be activated by Ca(2+). As many as 21 residues (365) of loop III could be deleted without impairing receptor expression or activation. Deletion of portions of either loops I (50) or IV (438) did not impair receptor expression but significantly reduced Ca(2+) activation. Deletion of the entire loop II (117) abolished receptor expression and function, but the replacement of even a single residue within this deletion mutant led to expression of a monomeric form of the receptor showing increased Ca(2+) sensitivity but reduced maximal activation. Our results reveal that certain residues within loops I and IV are dispensable in formation of the VFT domain but are critical for Ca(2+) activation of the receptor. In contrast, the residues in loop II are critical for maintaining the inactive state of the CaR. We discuss these results in light of the recently defined crystal structure of the homologous domain of the type 1 metabotropic glutamate receptor.  相似文献   

16.
This article describes a novel method to access functional interactions of two defective mutant receptors. As a model, luteinizing hormone receptor, a G-protein-coupled receptor, was used by coexpressing two different mutants, one defective in hormone binding and the other defective in signal generation. When these two mutants were coexpressed in a cell, the cell responded to the hormone and induced the hormone action, indicating the interaction of the two receptors and rescue of the activity. The luteinizing hormone receptor consists of a 350-amino-acid extracellular N-terminal domain (exodomain), followed by seven transmembrane domains and connecting loops (endodomain). Hormone binds to the exodomain, whereas hormone signals are generated in the endodomain. Here, we show that binding of hormone to one receptor can activate adenylyl cyclase through its transmembrane bundle, intramolecular activation (cis-activation), as well as intermolecular activation (trans-activation) through the transmembrane bundle of an adjacent receptor, without forming a stable receptor dimer. Our observations provide new insights into the mechanism of receptor activation mechanisms, and have implications for the treatment of inherited disorders of glycoprotein hormone receptors.  相似文献   

17.
Povelones M  Nusse R 《The EMBO journal》2005,24(19):3493-3503
The Frizzled (Fz) receptors contain seven transmembrane helices and an amino-terminal cysteine-rich domain (CRD) that is sufficient and necessary for binding of the ligands, the Wnts. Recent genetic experiments have suggested, however, that the CRD is dispensable for signaling. We engineered fz CRD mutant transgenes and tested them for Wg signaling activity. None of the mutants was functional in cell culture or could fully replace fz in vivo. We also show that replacing the CRD with a structurally distinct Wnt-binding domain, the Wnt inhibitory factor, reconstitutes a functional Wg receptor. We therefore hypothesized that the function of the CRD is to bring Wg in close proximity with the membrane portion of the receptor. We tested this model by substituting Wg itself for the CRD, a manipulation that results in a constitutively active receptor. We propose that Fz activates signaling in two steps: Fz uses its CRD to capture Wg, and once bound Wg interacts with the membrane portion of the receptor to initiate signaling.  相似文献   

18.
The gamma-aminobutyric acid type B (GABAB) receptor is an allosteric complex made of two subunits, GABAB1 (GB1) and GABAB2 (GB2). Both subunits are composed of an extracellular Venus flytrap domain (VFT) and a heptahelical domain (HD). GB1 binds GABA, and GB2 plays a major role in G-protein activation as well as in the high agonist affinity state of GB1. How agonist affinity in GB1 is regulated in the receptor remains unknown. Here, we demonstrate that GB2 VFT is a major molecular determinant involved in this control. We show that isolated versions of GB1 and GB2 VFTs in the absence of the HD and C-terminal tail can form hetero-oligomers as shown by time-resolved fluorescence resonance energy transfer (based on HTRF technology). GB2 VFT and its association with GB1 VFT controlled agonist affinity in GB1 in two ways. First, GB2 VFT exerted a direct action on GB1 VFT, as it slightly increased agonist affinity in isolated GB1 VFT. Second and most importantly, GB2 VFT prevented inhibitory interaction between the two main domains (VFT and HD) of GB1. According to this model, we propose that GB1 HD prevents the possible natural closure of GB1 VFT. In contrast, GB2 VFT facilitates this closure. Finally, such inhibitory contacts between HD and VFT in GB1 could be similar to those important to maintain the inactive state of the receptor.  相似文献   

19.
The mammalian innate immune response is responsible for the early stages of defense against invading pathogens. One of the major receptor families facilitating innate immune activation is the Toll-like receptor (TLR) family. These receptors are type 1 membrane proteins spanning the membrane with a single transmembrane domain (TMD). All TLRs form homo- and hetero-dimers within membranes and new data suggest that the single transmembrane domain of some of these receptors is involved in their dimerization and function. Newly identified TLR dimers are continuously reported but only little is known about the importance of the TMDs for their dimer assembly and signaling regulation. Uncontrolled or untimely activation of TLRs is related to a large number of pathologies ranging from cystic fibrosis to sepsis and cancer. In this review we will focus on the contribution of the TMDs of innate immune receptors – specifically TLR2–to their regulation and function. In addition, we will address the current issues remaining to be solved regarding the mechanistic insights of this regulation. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号