首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以矮牵牛生根试管苗的叶片为外植体,在培养基MS NAA0.1mg/L 6-BA1.6mg/L上诱导体细胞胚胎直接发生。从接种后第一天开始观察叶片愈伤组织发生、发育的外部形态变化,从接种后第七天开始,每隔3天取变化明显的叶片组织块切片观察其胚状体的组织细胞学连续变化。组织切片观察表明,矮牵牛叶片体细胞胚胎发生类似于合子胚的发育过程;矮牵牛体细胞胚起源于叶肉细胞,胚性细胞与非胚性细胞染色明显不同,体细胞胚胎与周边其它组织有明显界线;体细胞胚胎的发育经历胚性细胞、多细胞原胚、球形胚、梨形胚、心形胚、鱼雷胚、类子叶胚等几个阶段。  相似文献   

2.
白杄体细胞胚胎发生的细胞组织学和淀粉积累动态的研究   总被引:4,自引:0,他引:4  
以白木千(PiceameyeriRehd.etWils.)的成熟种胚为外植体,诱导体细胞胚胎发生。整体染色封片和组织切片的观察结果表明,白木千体细胞胚起源于胚性愈伤组织的单个细胞。胚性细胞经过一次不均等分裂产生两个细胞,即胚细胞和胚柄细胞。然后依次经过胚性胚柄团、球形胚、心形胚及鱼雷形胚阶段,最后发育成具有子叶的成熟胚。通过PAS反应研究后发现,在体细胞胚发育过程中,淀粉粒在胚性胚柄团时期开始积累,至心形胚时期达到积累高峰,且淀粉粒的分布主要集中于胚柄细胞、分裂旺盛的胚细胞、器官原基及其附近细胞。据此结果推测淀粉的消长与体细胞胚发生的能量供应有关。  相似文献   

3.
虎眼万年青的直接体细胞胚胎发生和植株再生   总被引:5,自引:0,他引:5  
以虎眼万年青(Ornithogalum caudatum Jacq.)子鳞茎的鳞叶为外植体,不经过愈伤组织阶段,直接诱导体细胞胚胎发生并再生植株。组织切片和扫描电镜的观察结果表明:体细胞胚来自鳞叶表皮最外层的单个细胞。这个细胞经第一次平周分裂,成为2-细胞原胚,然后依次经过4-细胞原胚、球形胚、香蕉形胚等阶段发育成小植株,其形态学发育过程与合子胚相似。小植株移入土中,1周后即可成活。此外,还观察到直接体细胞胚只产生于鳞叶的近轴面,而远轴面无体细胞胚产生,这两个部位在细胞结构和形态上有显著差异。  相似文献   

4.
糜子离体体细胞胚胎发生的组织学研究   总被引:1,自引:0,他引:1  
利用组织学连续石腊切片的研究方法,观察了糜子组织培养中植株再生的过程,从而证明了植株再生是通过体细胞胚胎发生途径的。结果表明:(1) 糜子成熟胚培养首先从下胚轴及胚根区愈伤组织化;(2) 体细胞胚起源于下胚轴及胚根维管束周围愈伤组织中单个离散的胚性细胞;(3) 糜子离体体细胞胚有与典型禾谷类作物合子胚大致相似的发育过程。  相似文献   

5.
石防风试管苗的根经2,4-D诱导可形成具有发生体细胞胚潜能的愈伤组织,用愈伤组织制备悬浮细胞。细胞及组织学的观察表明,体细胞胚发生经历了单细胞、丝状体、细胞团、愈伤组织及胚性细胞团的出现及类胚体的各个发育阶段。丝状体可以经过不同的分裂途径发育为细胞团。愈伤组织表面或者内部的某些细胞演变为胚性细胞,它们不断分裂形成了体细胞胚,一个愈伤组织可形成一个或几个体细胞胚。  相似文献   

6.
以白Qian的成熟种胚为外植体,诱导体细胞胚胎发生。整体染色封片和组织切片的观察结果表明,白Qian体细胞胚起源于胚性愈伤组织的单个细胞。胚性细胞经过一次不均等分裂产生两个细胞,即胚细胞和胚柄细胞。然后依次经过胚性胚柄团、球形胚、心形胚及鱼雷形胚阶段,最后发育成具有子叶的成熟胚。通过PAS反应研究后发现,在体细胞胚发育过程中,淀粉粒在胚性胚柄团时期开始积累,至心形胚时期达到积累高峰,且淀粉粒的分布  相似文献   

7.
石刁柏组织培养中体细胞胚发生的组织细胞学观察   总被引:2,自引:0,他引:2  
以石刁柏(Asparagus officinalis)无菌苗的嫩茎切段为外植体,在含有1 mg/LNAA+0.5 mg/L BA的MS培养基上可100%地被诱导形成愈伤组织,在此条件下可长期继代,将继代的愈伤组织转入含有2 mg/L 2,4-D 0.5mg/L NAA的MS培养基上后,约有70%的愈伤组织块转变为胚性愈伤组织,这些胚性愈伤组织在3,4-D浓度进一步降低为0.5mg/L的条件下发育形成体细胞胚。切片观察表明:这些胚性愈伤组织是从愈伤组织的表层或近表层产生的。这些细胞核大,多核仁,细胞质浓、染色深的胚性细胞中的一些单个细胞处于与邻近细胞隔离状态,细胞壁也明显加厚。这些单细胞开始分裂,第一次分裂多为不均等分裂,形成一个大的基细胞和一个小的顶细胞,进一步分裂形成三细胞、四细胞、五细胞和具胚柄的多细胞原胚。原胚发育形成球形胚、梨形胚、香蕉形胚,由于在胚的一侧细胞分裂旺盛形成单子叶突起,最后形成子叶胚。其发育过程类似于单子叶植物合子胚的发育过程。  相似文献   

8.
2,4-D诱导的花生体细胞胚发生的组织学研究   总被引:14,自引:0,他引:14  
花生成熟胚胚叶在MS附加 2 0mg/L 2 ,4_D的培养基上诱导 2 0d后 ,转移至无激素培养基MS0 继续培养 ,可获高频体细胞胚发生。组织学观察表明 ,体细胞胚起源于胚叶上表皮及表皮下数层细胞 ,这些细胞脱分化形成细胞质浓厚、细胞核大的胚性细胞团 ,胚性细胞团继续分裂形成体细胞胚。体细胞胚的发育过程经历球形胚、心形胚、鱼雷胚、子叶胚四个时期  相似文献   

9.
花生成熟胚胚叶在佃附加20mg/L 2,4-D的培养基上诱导20d后,转移至无激素培养基MS0继续培养,可获高频体细胞胚发生。组织学观察表明,体细胞胚起源于胚叶上表皮及表皮下数层细胞,这些细胞脱分化形成细胞质浓厚、细胞核大的胚性细胞团,胚性细胞团继续分裂形成体细胞胚。体细胞胚的发育过程经历球形胚、心形胚、鱼雷胚、子叶胚四个时期。  相似文献   

10.
采用多重示踪技术研究宁夏枸杞 (Lyciumbar barumL .)体细胞胚发生中对多种金属离子的吸收动态及其与游离氨基酸含量变化之间的关系。结果表明 :(1)在枸杞体细胞胚发生中对一些金属离子具有选择吸收特性 ,而且在体细胞胚发育不同时期对同一种金属离子的吸收量也不同 ;(2 )在枸杞体细胞胚发生早期对多数金属离子吸收量迅速增加 ,而后下降。到球形胚期吸收量达到第二个峰值 ,而且金属离子被吸收后提高了体细胞胚发生的频率 ;(3)枸杞体细胞胚发生中游离氨基酸总量从胚性细胞启动期开始下降 ,到胚性细胞形成期到达谷底 ,然后开始上升 ,到多细胞原胚期达到峰值 ,多数游离氨基酸含量变化与金属离子被吸收的量相交叉 ;(4 )外加RbCl和SrCl2 对枸杞体细胞胚发生具有促进作用 ,而且加大了几种游离氨基酸含量变化的幅度。文章讨论了它们之间的关系及其可能的作用机理  相似文献   

11.
The aim of the present study was to describe the occurrence of three pectic epitopes, recognized by JIM7, LM19, and LM5 antibodies, during somatic (SE) and zygotic (ZE) embryogenesis in Arabidopsis thaliana. The epitopes recognized by JIM7 and LM19 antibodies showed different distributions during SE stages. Moreover, in the early stages of somatic embryo development, a cytoplasmic occurrence of LM19 epitope was detected. Distribution of a pectic epitope recognized by LM5 antibody corresponded to a vascular system differentiation pattern. Occurrence of LM5 epitope was the same in both zygotic and somatic embryos and often restricted to newly synthesized walls of two adjacent cells. These data suggest that both low and high methyl-esterified pectins (recognized by LM19 and JIM7 antibodies, respectively) are developmentally regulated during SE stages and (1→4)-β-D-galactan epitope (recognized by LM5 antibody) may play a role in cell cytokinesis.  相似文献   

12.
Several coniferous species can be propagated via somatic embryogenesis. This is a useful method for clonal propagation, but it can also be used for studying how embryo development is regulated in conifers. However, in conifers it is not known to what extent somatic and zygotic embryos develop similarly, because there has been little research on the origin and development of somatic embryos. A time-lapse tracking technique has been set up, and the development of more than 2000 single cells and few-celled aggregates isolated from embryogenic suspension cultures of Norway spruce (Picea abies L. Karst.) and embedded in thin layers of agarose has been traced. Experiments have shown that somatic embryos develop from proembryogenic masses which pass through a series of three characteristic stages distinguished by cellular organization and cell number (stages I, II and III) to transdifferentiate to somatic embryos. Microscopic inspection of different types of structures has revealed that proembryogenic masses are characterized by high interclonal variation of shape and cellular constitution. In contrast, somatic embryos are morphologically conservative structures, possessing a distinct protoderm-like cell layer as well as embryonal tube cells and suspensor. The lack of staining of the arabinogalactan protein epitope recognized by the monoclonal antibody JIM13 was shown to be an efficient marker for distinguishing proembryogenic masses from somatic embryos. The vast majority of cells in proembryogenic masses expressed this epitope and none of cells in the early somatic embryos. The conditions that promote cell proliferation (i.e. the presence of exogenous auxin and cytokinin), inhibit somatic embryo formation; instead, continuous multiplication of stage I proembryogenic masses by unequal division of embryogenic cells with dense cytoplasm is the prevailing process. Once somatic embryos have formed, their further development to mature forms requires abscisic acid and shares a common histodifferentiation pattern with zygotic embryos. Although the earliest stages of somatic embryo development comparable to proembryogeny could not be characterized, the subsequent developmental processes correspond closely to what occurs in the course of early and late zygotic embryogeny. A model for somatic embryogenesis pathways in Picea abies is presented.  相似文献   

13.
Therapeutic cloning,which is based on human somatic cell nuclear transfer,is one of our major research objectives.Though inter-species nuclear transfer has been introduced to construct human somatic cell cloned embryos,the effects of type,passage,and preparation method of donor cells on embryo development remain unclear.In our experiment,cloned embryos were reconstructed with different passage and preparation methods of ossocartilaginous cell,skin fibroblast,and cumulus cells.The cumulus cell embryos showed significantly higher development rates than the other two (P<0.05).The development rate of embryos reconstructed with skin fibroblasts of different passage number and somatic cells of different chilling durations showed no significant difference.Also,fluorescence in situ hybridization (FISH)was conducted to detect nuclear derivation of the embryos.The result showed that the nuclei of the inter-species cloned embryo cells came from human.We conclude that (1)cloned embryos can be constructed through human-rabbit interspecies nuclear transfer;(2)different kinds of somatic cells result in different efficiency of nuclear transfer,while in vitro passage of the donor does not influence embryo development;(3)refrigeration is a convenient and efficient donor cell preparation method.Finally,it is feasible to detect DNA gcnotype through FISH.  相似文献   

14.
The sequence of events in the functional body pattern formation during the somatic embryo development in cowpea suspensions is described under three heads. Early stages of somatic embryogenesis were characterized by both periclinal and anticlinal cell divisions. Differentiation of the protoderm cell layer by periclinal divisions marked the commencement of somatic embryogenesis. The most critical events appear to be the formation of apical meristems, establishment of apical-basal patterns of symmetry, and cellular organization in oblong-stage somatic embryo for the transition to torpedo and cotyledonary-stage somatic embryos. Two different stages of mature embryos showing distinct morphology, classified based on the number of cotyledons and their ability to convert into plantlets, were visualized. Repeated mitotic divisions of the sub-epidermal cell layers marked the induction of proembryogenic mass (PEM) in the embryogenic calli. The first division plane was periclinally-oriented, the second anticlinally-oriented, and the subsequent division planes appeared in any direction, leading to clusters of proembryogenic clumps. Differentiation of the protoderm layer marks the beginning of the structural differentiation in globular stage. Incipient procambium formation is the first sign of somatic embryo transition. Axial elongation of inner isodiametric cells of the globular somatic embryo followed by the change in the growth axis of the procambium is an important event in oblong-stage somatic embryo. Vacuolation in the ground meristem of torpedo-stage embryo begins the process of histodifferentiation. Three major embryonic tissue systems; shoot apical meristem, root apical meristem, and the differentiation of procambial strands, are visible in torpedo-stage somatic embryo. Monocotyledonary-stage somatic embryo induced both the shoot apical meristem and two leaf primordia compared to the ansiocotyledonary somatic embryo.  相似文献   

15.
Ultrastructural studies (SEM and TEM) were performed on cotyledonsof pineapple guava ( Feijoa sellowiana Berg, Myrtaceae) inducedto form embryos on medium containing 1.0 mg l-1(4.5µM2,4-D) and 0.3M sucrose. At the time of culture, the cells werefilled with protein and lipid bodies. Microbodies and poorlydifferentiated organelles could also be seen. In contrast togerminating cotyledons, where lipid and protein reserves werequickly metabolized, cells of the embryogenically induced cotyledonsshowed evidence of reserve consumption only after 5 d of culture.Subepidermal cells of the upper cotyledonary surface underwentseveral divisions giving rise to a meristematic layer of severalcells thickness from which somatic embryos developed. Embryoscould also be formed directly by successive divisions of epidermalcells. Cells involved in somatic embryo formation containeda large nucleus with a conspicuous nucleolus and dense cytoplasmwhere numerous ribosomes, mitochondria, plastids with starchand short profiles of rough endoplasmic reticulum were present.Plasmodesmata were present both in cell walls of the meristematiccells and in few celled embryos whereas in degenerating embryosor in more advanced stages of somatic embryo development noplasmodesmata could be found. Although oil bodies were not observedin the meristematic cells they were identified in very youngembryos, being the first reserve compounds to appear. Cellsnot involved in somatic embryo differentiation were characterizedby the presence of several microbodies containing a crystalloidinclusion and elongated mitochondria. Feijoa sellowiana ; pineapple guava; somatic embryogenesis; ultrastructural studies  相似文献   

16.
Ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.) were quantified using morphometric techniques. The total area per cell profile and the cell volume percentage of the whole cell, endoplasmic reticulum (ER), Golgi bodies, mitochondria, nuclei, lipids, plastids, starch grains and vacuoles were measured and comparisons made between three zygotic and three somatic embryo developmental stages. All measurements were taken from scutellar or scutellar-derived cells. Zygotic embryogenesis was characterized by increases in cell size, lipids, plastids, starch, Golgi bodies, mitochondria and ER. Somatic embryogenesis was characterized by two phases of cell development: (1) the dedifferentiation of scutellar cells involving a reduction in cell and vacuole size and an increase in cell activity during somatic proembryoid formation and (2) the development of somatic embryos in which most cell organelle quantities returned to values found in late coleoptile or mature predesiccation zygotic stages. In summary, although their developmental pathways differed, the scutella of somatic embryos displayed cellular variations which were within the ranges observed for later stages of zygotic embryogenesis.  相似文献   

17.
The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.  相似文献   

18.
Non-embryogenic cells (NEC) and embryogenc cells (EC) were separated from cell clusters derived from the hypocotyl segments of celery seedlings, which had been suspension-cultured in MS medium supplemented with 105 M 2,4-D. The EC formed globular embryos in medium without 2,4-D. The globular embryo developed through heart-shaped, torpedo to cotyledonary embryos within 10 days. The EC and developing embryos were fractionated into symplastic [MeOH, hot water (HW), starch (S)] and apoplastic [pectin, hemicellulose, TFA (trifluoroacetic acid)-soluble and cellulose] fractions. The EC contained lower levels of sugar in the MeOH fraction and higher levels of starch than NEC. In the apoplastic fractions, there were no differences of total sugar amounts between NEC and EC. Cellulose contents were about 10% of the wall polysaccharides. During somatic embryogenesis, total sugar contents of the MeOH and HW fractions increased till the heart-shaped embryo stage, and then decreased during the torpedo and cotyledonary embryo stages. The sugar contents of the starch, pectin, TFA-soluble, and cellulose fractions did not change during the stages mentioned above. However, the hemicellulose substances remarkably increased during embryogenesis, and then decreased as the development proceeded. The neutral sugar components of the hemicellulosic fractions were analyzed. Arabinose increased markedly in EC to the globular embryo stage, but decreased as the development proceeded. Galactose increased only at the torpedo and cotyledonary embryo stages. Xylose was present at lower levels in all stages of embryogenesis than in the differentiated hypocotyl cell walls. These results suggest that there was a high turnover of arabinogalactan polysaccharides during embryogenesis, and that xylan accumulated in the cell walls of differentiated cells  相似文献   

19.
胚胎体外共培养:影响因素及作用机理   总被引:7,自引:0,他引:7  
综述了近年来关于哺乳动物早期胚胎与体细胞共培养的研究进展。重点讨论了早期胚胎与不同类型体细胞共培养,血清、发情周期和体细胞传代次数对胚胎共培养效果的影响,以及胚胎体外共培养的作用机理。体细胞共培养体系可以改善早期胚胎体外培养的条件,促进胚胎发育,提高着床率和妊娠率,在发育生殖研究领域有着广泛的应用前景。然而,对其影响因素和作用机理尚欠系统深入研究,许多问题还亟待解决。  相似文献   

20.
对近年来牛体细胞核移植技术研究的进展作一综述。其中包括:供体细胞种类、传代次数和所处细胞周期的选择;对供体细胞的特殊处理;卵母细胞的采集;传统去核方法的优化、去透明带核移植技术的建立与发展;胚胎重构、激活和体外培养条件的比较与改进等内容。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号