首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
M T Dettori  R Quarta  I Verde 《Génome》2001,44(5):783-790
A linkage map was obtained using a BC1 progeny (Prunus persica x (P. persica x P ferganensis)). The map is composed of 109 loci (74 RFLPs, 17 SSRs, 16 RAPDs, and two morphological traits) distributed in 10 linkage groups. Loci, segregating in five different ratios, were integrated in the map with JoinMap 2.0 software. The map covers 521 cM of the peach genome. The average distance between adjacent loci is 4.8 cM. Two monogenic traits, flesh adhesion (F/f) and leaf glands (E/e), were placed on the map. Thirty-two loci in common with a saturated linkage map of Prunus allowed a comparative analysis to be made between the two maps. Homologies were found among the respective linkage groups. No relevant differences were observed in the linear order of the common loci.  相似文献   

2.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

3.
A molecular genetic map of cassava (Manihot esculenta Crantz)   总被引:12,自引:0,他引:12  
 A genetic linkage map of cassava has been constructed with 132 RFLPs, 30 RAPDs, 3 microsatellites, and 3 isoenzyme markers segregating from the heterozygous female parent of an intraspecific cross. The F1 cross was made between ‘TMS 30572’ and ‘CM 2177-2’, elite cassava cultivars from Nigeria and Colombia, respectively. The map consists of 20 linkage groups spanning 931.6 cM or an estimated 60% of the cassava genome. Average marker density is 1 per 7.9 cM. Since the mapping population is an F1 cross between heterozygous parents, with unique alleles segregating from either parent, a second map was constructed from the segregation of 107 RFLPs, 50 RAPDs, 1 microsatellite, and 1 isoenzyme marker from the male parent. Comparison of intervals in the male-and female-derived maps, bounded by markers heterozygous in both parents, revealed significantly less meiotic recombination in the gametes of the female than in the male parent. Six pairs of duplicated loci were detected by low-copy genomic and cDNA sequences used as probes. Efforts are underway to saturate the cassava map with additional markers, to join the male- and female-derived maps, and to elucidate genome organization in cassava. Received: 5 July 1996/Accepted: 22 November 1996  相似文献   

4.
Random amplified polymorphic DNAs (RAPDs) were used to construct linkage maps of the parent of a longleaf pine (Pinus palustris Mill.) slash pine (Pinus elliottii Englm.) F1 family. A total of 247 segregating loci [233 (1∶1), 14 (3∶1)] and 87 polymorphic (between parents), but non-segregating, loci were identified. The 233 loci segregating 1∶1 (testcross configuration) were used to construct parent-specific linkage maps, 132 for the longleaf-pine parent and 101 for the slash-pine parent. The resulting linkage maps consisted of 122 marker loci in 18 groups (three or more loci) and three pairs (1367.5 cM) for longleaf pine, and 91 marker loci in 13 groups and six pairs for slash pine (952.9 cM). Genome size estimates based on two-point linkage data ranged from 2348 to 2392 cM for longleaf pine, and from 2292 to 2372 cM for slash pine. Linkage of 3∶1 loci to testcross loci in each of the parental maps was used to infer further linkages within maps, as well as potentially homologous counterparts between maps. Three of the longleaf-pine linkage groups appear to be potentially homologous counterparts to four different slash-pine linkage groups. The number of heterozygous loci (previously testcross in parents) per F1 individual, ranged from 96 to 130. With the 87 polymorphic, but non-segregating, loci that should also be heterozygous in the F1 progeny, a maximum of 183–217 heterozygous loci could be available for mapping early height growth (EHG) loci and for applying genomic selection in backcross populations.  相似文献   

5.
D Verhaegen  C Plomion 《Génome》1996,39(6):1051-1061
Two single-tree linkage maps were constructed for Eucalyptus urophylla and Eucalyptus grandis, based on the segregation of 480 random amplified polymorphic DNA (RAPD) markers in a F1 interspecific progeny. A mixture of three types of single-locus segregations were observed: 244 1:1 female, 211 1:1 male, and 25 markers common to both, segregating 3:1. Markers segregating in the 1:1 ratio (testcross loci) were used to establish separate maternal and paternal maps, while markers segregating in the 3:1 ratio were used to identify homology between linkage groups of the two species maps. An average of 2.8 polymorphic loci were mapped for each arbitrary decamer primer used in the polymerase chain reaction. The mean interval size beween framework markers on the maps was 14 cM. The maps comprised 269 markers covering 1331 cM and 236 markers covering 1415 cM, in 11 linkage groups, for E. urophylla (2n = 2x = 22) and E. grandis (2n = 2x = 22), respectively. A comparative mapping analysis with two other E. urophylla and E. grandis linkage maps showed that RAPDs could be reliable markers for establishing a consensus species map. RAPD markers were automatically and quantitatively scored with an imaging analyzer. They were classified into four categories based on their optical density. A fragment intensity threshold is proposed to optimize the selection of reliable RAPD markers for future mapping experiments. Key words : genetic linkage map, Eucalyptus urophylla, Eucalyptus grandis, random amplified polymorphic DNA, RAPD, automated data collection.  相似文献   

6.
A genetic linkage map of Theobroma cacao L.   总被引:2,自引:0,他引:2  
A linkage map of the cocoa genome comprising 193 loci has been constructed. These loci consist of 5 isozymes, 101 cDNA/RFLPs, 4 loci from genes of known function, 55 genomic DNA/RFLPs and 28 RAPDs. A population of 100 individuals derived from a cross between two heterozygous genotypes was used. Segregation analyses were performed with the JoinMap program. Ten linkage groups, which putatively correspond to the ten gametic chromosomes of cocoa, were identified. The map covers a total length of 759 cM with a 3.9 cM average distance between 2 markers. A small fraction (9%) of the markers deviated significantly from the expected Mendelian ratios.  相似文献   

7.
Linkage analyses increasingly complement cytological and traditional plant breeding techniques by providing valuable information regarding genome organization and transmission genetics of complex polyploid species. This study reports a genome map of buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.). Maternal and paternal maps were constructed with restriction fragment length polymorphisms (RFLPs) segregating in 87 F1 progeny from an intraspecific cross between two heterozygous genotypes. A survey of 862 heterologous cDNAs and gDNAs from across the Poaceae, as well as 443 buffelgrass cDNAs, yielded 100 and 360 polymorphic probes, respectively. The maternal map included 322 RFLPs, 47 linkage groups, and 3464 cM, whereas the paternal map contained 245 RFLPs, 42 linkage groups, and 2757 cM. Approximately 70 to 80% of the buffelgrass genome was covered, and the average marker spacing was 10.8 and 11.3 cM on the respective maps. Preferential pairing was indicated between many linkage groups, which supports cytological reports that buffelgrass is a segmental allotetraploid. More preferential pairing (disomy) was found in the maternal than paternal parent across linkage groups (55 vs. 38%) and loci (48 vs. 15%). Comparison of interval lengths in 15 allelic bridges indicated significantly less meiotic recombination in paternal gametes. Allelic interactions were detected in four regions of the maternal map and were absent in the paternal map.  相似文献   

8.
Random amplified polymorphic DNAs(RAPDs) were used to construct linkage maps of the parents of a Populus adenopoda Maxim. x P. alba L. Fl family. A set of 620 random oligonucleotide primers were screened and 128 primers were selected to generate RAPD markers within a sample of 80 Fl progenies. A total of 333 segregating loci [ (326( 1:1 ) ,7(3:1 ) ] were identified. Among the 326 1:1 segregating loci (238 loci from P. adenopoda and 88 loci from P. dba),36 loci (26 loci in P. adenopoda and 10 loci in P. dba) were found distorted from the normal 1:1 ratio. Altogether 290 loci segregating 1:1 (testcross configuration) were used to construct parent-specific linkage maps,212 for P. alba and 78 for P. adenopoda. The resulting linkage maps consisted of 189 marker loci in 20 groups (four or more loci per group), 6 triples and 16 pairs for P. dba, which cover the map distance about 2 402.4 cM, and 41 linked marker loci for P. adenopoda which cover map distance about 479.4 cM. Further study is warranted to locate some important quantitative trait loci (QTLs) based on the maps.  相似文献   

9.
A genetic linkage map of Salix (2n = 38), composed of 325 AFLP and 38 RFLP markers has been constructed. The map was based on a population ( n = 87) derived from a cross between the male hybrid clone "Bj?rn" ( Salix viminalis x Salix schwerinii) and the female clone "78183" ( S. viminalis). Three hundred fifty seven AFLPs corresponding to DNA polymorphisms heterozygous in one parent and null in the other were scored. A total of 87 RFLP probes, most (83) derived from the Populus genome, yielded 39 and 11 polymorphic loci segregating in a 1:1 and 1:2:1 ratio respectively. Two maps, one for each parent, were constructed according to the "two-way pseudo-testcross" mapping strategy. The S. viminalis x S. schwerinii map (2,404 cM) included 217 markers and formed 26 major linkage groups while S. viminalis (1,844 cM) consisted of 146 markers placed on 18 major groups. In addition, eight and 14 additional minor linkage groups composed of less than four markers (doubles and triplets) were obtained in the S. viminalis x S. schwerinii and the S. viminalis maps, respectively. Both maps provided 70-80% genome coverage with an average density of markers of 14 cM. To investigate possible homologies between the parental maps, 20 AFLPs and 11 RFLPs segregating in 3:1 or 1:2:1 ratios were included in the linkage analysis. Eight linkage groups homologous between the two maps were detected. The present genetic map was used to identify quantitative trait loci (QTLs) affecting growth-related traits. Eleven QTLs were identified; seven QTLs for height growth, one QTL for stem diameter, one QTL for the height: diameter ratio, one QTL for the number of vegetative buds during flowering time and one QTL for the number of shoots. The estimated magnitude of the QTL effect ranged from 14 to 22% of the total phenotypic variance. One QTL associated with height growth and one affecting the height: diameter ratio were overlapping in the same marker interval with the QTL affecting stem diameter. QTL stability over years was estimated for traits measured in multiple years. Generally, QTLs were only significant in a single year although two QTLs for height growth were close to reaching the significance level in 2 consecutive years.  相似文献   

10.
We have constructed linkage maps for two parents of white spruce [ Picea glauca (Moench) Voss]. Haploid megagametophytes from 92 and 96 seeds of parents M2 and 80132, respectively, were analysed with RAPD, SCAR and ESTP markers. Fragments segregating in a 1:1 Mendelian ratio were classified and mapped using MAPMAKER, GMENDEL and JOINMAP. For M2, the analysis with JOINMAP resulted in 165 loci (152 RAPDs, 3 SCARs and 10 ESTPs) mapping to 23 linkage groups and covering 2,059.4 cM(Kosambi function, K). For 80132, the analysis resulted in 144 loci (137 RAPDs, 1 SCAR and 7 ESTPs) mapping to 19 linkage groups and covering 2,007.7 cM(K). The maps covered 87 and 73% of the entire genome of parents M2 and 80132, respectively. Similar results were obtained with MAPMAKER and GMENDEL. A comparison was made between the two individual maps and 16 loci were shared between the two maps.  相似文献   

11.
The first linkage map established by Lanaud et al. (1995) was used as a starting point to produce a high-density molecular linkage map. A mapping population of 181 progenies resulting from a cross between two heterozygous genotypes, a Forastero and a Trinitario (hybrid between Forastero and Criollo), was used for the linkage analysis. A new DNA isolation protocol was established, which allows enough good quality DNA to construct a genetic map with PCR-based markers. The map comprises 424 markers with an average spacing between markers of 2.1 cM. The marker types used were five isozymes, six loci from known function genes, 65 genomic RFLPs, 104 cDNA RFLPs, three telomeric probes, 30 RAPDs, 191 AFLPs and 20 microsatellites. The use of new marker types, AFLP and microsatellites, did not disturb the original order of the RFLP loci used on the previous map. The genetic markers were distributed over ten linkage groups and cover 885.4 cM. The maximum distance observed between adjacent markers was 16.2 cM, and 9.4% of all loci showed skewed segregation. Received: 2 January 2000 / Accepted: 12 February 2000  相似文献   

12.
13.
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F1 cross family (Laminaria iongissima Aresch. × L. Japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To Investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.  相似文献   

14.
Fifty-four RAPD (random amplified polymorphic DNA) markers and 6 SSRs (simple sequence repeats) were included in a molecular marker map with 120 RFLPs (restriction fragment length polymorphisms) and 7 isozyme genes previously constructed using the offspring of a cross between the almond (Prunus amygdalus) cultivars 'Ferragnès' and 'Tuono'. Only highly reproducible RAPDs segregating 1:1 were used. To identify these markers, a total of 325 primers were screened, from which 41 produced RAPDs useful for mapping. Polymorphism was detected in six of the eight Prunus SSRs (simple sequence repeats) studied, thus enabling these to be mapped. All markers were placed on the 8 linkage groups previously identified. The number of new markers included in the map of 'Ferragnès' was 33 for a total of 126, and 30 in the map of 'Tuono' for a total of 99. The sizes of the maps of 'Ferragnès' (415 cM) and 'Tuono' (416 cM) were similar, representing a 5% increase over the maps constructed solely with isozymes and RFLPs. The estimated total size of the almond map was of 457 cM. Some markers were placed in zones with low density of markers and others in the extreme of linkage groups. The use of RAPD markers to complete genetic maps constructed with transferable markers is discussed.  相似文献   

15.
RAPD和SSR两种标记构建的中国对虾遗传连锁图谱   总被引:10,自引:0,他引:10  
利用RAPD和SSR分子标记结合拟测交策略,对中国对虾(Fenneropenaeuschinensis)“黄海1号”雌虾与野生雄虾作为亲本进行单对杂交产生的F1代,采用RAPD和SSR两种分子标记技术初步构建了中国对虾雌、雄遗传连锁图谱。对460个RAPD引物和44对SSR引物进行筛选,共选出61个RAPD引物和20对SSR引物,用于对父母本和82个F1个体进行遗传分析。共得到母本分离标记146个(RAPD标记128个,微卫星标记18个)和父本分离标记127个(RAPD标记109个,微卫星标记18个)。雌性图谱包括8个连锁群、9个三联体和14个连锁对,标记间平均间隔为11·28cM,图谱共覆盖1173cM,覆盖率为59·36%;雄性图谱包括10个连锁群、12个三联体和7个连锁对,标记间平均间隔为12·05cM,图谱共覆盖1144·6cM,覆盖率为62·01%。中国对虾遗传图谱的构建为其分子标记辅助育种、比较基因组作图及数量性状位点的定位与克隆奠定了基础。  相似文献   

16.
Construction of a reference linkage map for melon.   总被引:19,自引:0,他引:19  
A map of melon (Cucumis melo L.) with 411 markers (234 RFLPs, 94 AFLPs, 47 RAPDs, 29 SSRs, five inter-SSRs, and two isozymes) and one morphological trait (carpel number) was constructed using the F2 progeny of a cross between the Korean accession P1161375 and the Spanish melon type 'Pinyonet Piel de Sapo'. RFLPs were obtained using 212 probes from different genomic and cDNA melon libraries, including 16 Arabidopsis ESTs, 13 Cucumis known genes, and three resistant gene homologues. Most loci (391) mapped to 12 major linkage groups, spanning a total genetic distance of 1197 cM, with an average map interval of 3 cM/marker. The remaining 21 loci (six RAPDs and 15 AFLPs) were not linked. A majority (66%) of the markers were codominant (RFLPs, SSRs, and isozymes), making them easily transferable to other melon crosses. Such markers can be used as a reference, to merge other melon and cucumber maps already constructed. Indeed, some of them (23 SSRs, 14 RFLPs, one isozyme, and one morphological trait) could act as anchor points with other published cucurbit maps.  相似文献   

17.
Comparison of the genetic maps of Brassica napus and Brassica oleracea   总被引:14,自引:0,他引:14  
 The genus Brassica consists of several hundreds of diploid and amphidiploid species. Most of the diploid species have eight, nine or ten pairs of chromosomes, known respectively as the B, C, and A genomes. Genetic maps were constructed for both B. napus and B. oleracea using mostly RFLP and RAPD markers. For the B. napus linkage map, 274 RFLPs, 66 RAPDs, and two STS loci were arranged in 19 major linkage groups and ten smaller unassigned segments, covering a genetic distance of 2125 cM. A genetic map of B. oleracea was constructed using the same set of RFLP probes and RAPD primers. The B. oleracea map consisted of 270 RFLPs, 31 RAPDs, one STS, three SCARs, one phenotypic and four isozyme marker loci, arranged into nine major linkage groups and four smaller unassigned segments, covering a genetic distance of 1606 cM. Comparison of the B. napus and B. oleracea linkage maps showed that eight out of nine B. oleracea linkage groups were conserved in the B. napus map. There were also regions in the B. oleracea map showing homoeologies with more than one linkage group in the B. napus map. These results provided molecular evidence for B. oleracea, or a closely related 2n=18 Brassica species, as the C-genome progenitor, and also reflected on the homoeology between the A and C genomes in B. napus. Received: 14 June 1996 / Accepted: 11 October 1996  相似文献   

18.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

19.
The primary genetic linkage maps of Fenneropenaeus chinensis (Osbeck) were constructed by using the “two-way pseudo-testcross” strategy with RAPD and SSR markers. Parents and F1 progeny were used as segregating populations. Sixty-one RAPD primers and 20 pairs of SSR primers were screened from 460 RAPD primers and 44 pairs of SSR primers. These primers were used to analyze the parents and 82 progeny of the mapping family. About 146 primers (128 RAPDs, 18 microsatellites) in the female and 127 primers (109 RAPDs, 18 microsatellites) in the male were segregating markers. The female linkage map included eight linkage groups, nine triplets and 14 doublets, spanning 1,173 cM with the average marker density of 11.28 cM, and the observed coverage was 59.36%. The male linkage map included 10 linkage groups, 12 triplets and seven doublets, spanning 1,144.6 cM with the average marker density of 12.05 cM, and the observed coverage was 62.01%. The construction of the F. chinensis genetic linkage maps here opened a new prospect for marker-assisted selection program, comparative genomics and quantitative trait loci (QTL) gene location and cloning.  相似文献   

20.
Genetic maps of Vitis (2n = 38) have been constructed from an interspecific hybrid population of 58 seedlings of the cross 'Horizon' ('Seyval' x 'Schuyler') x Illinois 547-1 (V. cinerea B9 x V. rupestris B38). The maps were initially constructed based on 277 RAPD (random amplified polymorphic DNA) markers using a double-pseudotestcross strategy. Subsequently, 25 microsatellites, 4 CAPS (cleaved amplified polymorphic sequence), and 12 AFLP (amplified fragment length polymorphism) markers were added to the maps. Another 120 markers, mostly those segregating 3:1, were also assigned but not positioned on the linkage groups in the two maps. The 'Horizon' map consisted of 153 markers covering 1199 cM, with an average map distance of 7.6 cM between markers. The Illinois 547-1 map had 179 markers covering 1470 cM, with an average map distance of 8.1 cM. There were 20 linkage groups in each map, one more than the basic number of chromosomes in grapes. Ten linkage groups in each map were identified as homologous using 16 microsatellite and 2 CAPS markers polymorphic in both parents. A single locus controlling sex in grapes mapped close to a microsatellite marker. These maps provide enough coverage of the genome for QTL (quantitative trait loci) analysis and as a starting point for positional gene cloning in grapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号