首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An earlier study identified quantitative trait loci (QTLs) lb4, lb5b, and lb11b for quantitative resistance to Phytophthora infestans (late blight) in a backcross population derived from crossing susceptible cultivated tomato (Lycopersicon esculentum) with resistant L. hirsutum. The QTLs were located in intervals spanning 28–47 cM. Subsequently, near-isogenic lines (NILs) were developed for lb4, lb5b, and lb11b by marker-assisted backcrossing to L. esculentum. Sub-NILs containing overlapping L. hirsutum segments across each QTL region were selected and used to validate the QTL effects, fine-map QTLs, and evaluate potential linkage drag between resistance QTLs and QTLs for horticultural traits. The NILs and sub-NILs were evaluated for disease resistance and eight horticultural traits at three field locations. Resistance QTLs were detected in all three sets of NIL lines, confirming the BC1 mapping results. Lb4 mapped near TG609, and between TG182 and CT194, on chromosome 4, a 6.9-cM interval; lb5b mapped to an 8.8-cM interval between TG69a and TG413 on chromosome 5, with the most likely position near TG23; and lb11b mapped to a 15.1-cM interval on chromosome 11 between TG194 and TG400, with the peak centered between CT182 and TG147. Most QTLs for horticultural traits were identified in intervals adjacent to those containing the late blight resistance QTLs. Fine mapping of these QTLs permits the use of marker-assisted selection for the precise introgression of L. hirsutum segments containing late blight resistance alleles separately from those containing deleterious alleles at horticulturally important QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D.B. Neale  相似文献   

2.
A marker-assisted back-crossing (MABC) breeding programme was conducted to improve the root morphological traits, and thereby drought tolerance, of the Indian upland rice variety, Kalinga III. This variety, the recurrent parent in the MABC, had not previously been used for quantitative trait locus (QTL) mapping. The donor parent was Azucena, an upland japonica variety from Philippines. Five segments on different chromosomes were targeted for introgression; four segments carried QTLs for improved root morphological traits (root length and thickness) and the fifth carried a recessive QTL for aroma. Some selection was made at non-target regions for recurrent parent alleles. We describe the selection made in three backcross (BC) generations and two further crosses between BC3 lines to pyramid (stack) all five target segments. Pyramids with four root QTLs were obtained in eight generations, completed in 6 years using 3,000 marker assays in a total of 323 lines. Twenty-two near-isogenic lines (NILs) were evaluated for root traits in five field experiments in Bangalore, India. The target segment on chromosome 9 (RM242-RM201) significantly increased root length under both irrigated and drought stress treatments, confirming that this root length QTL from Azucena functions in a novel genetic background. No significant effects on root length were found at the other four targets. Azucena alleles at the locus RM248 (below the target root QTL on chromosome 7) delayed flowering. Selection for the recurrent parent allele at this locus produced early-flowering NILs that were suited for upland environments in eastern India.  相似文献   

3.
Fusarium head blight or scab resistance in wheat is a complex quantitative trait affected greatly by environments. Therefore, the quantitative trait loci (QTL) for scab resistance found in mapping projects require validation to be effectively utilized in breeding programs. In this study, by employing both forward and background selections with the help of molecular markers, near-isogenic lines (NILs) for scab resistance QTLs Qfh.nau-2B, Qfhs.nau-3B, Qfhi.nau-4B and Qfhi.nau-5A, three of which originating in scab resistance germplasm Wangshuibai, were developed with the elite line Miangyang 99-323 as the recurrent parent. During the process of backcross, selection was based solely on marker genotypes of the target regions, and on recipient genome recovery rate in BC2F1 and BC3F1. All the identified BC3F1 plants with the target QTL regions have more than 94% recipient genome composition (RGC), and out of four to five of them a plant with over 97% RGC were obtained in each backcross combination. Compared with Mianyang 99-323, the Qfhs.nau-3B NIL showed much better resistance to disease spread within spikes, the Qfhi.nau-4B and Qfhi.nau-5A NILs showed much better resistance to initial infection, and the Qfh.nau-2B NIL showed improvement in both types of resistance. These results were consistent with findings in the previous QTL mapping studies. Morphologically and agronomically these NILs were similar to Mianyang 99-323 except that Qfhi.nau-4B NIL was taller and had a longer spike, and Qfhi.nau-5A NIL had narrower leaves. These results demonstrated the feasibility of marker-assisted utilization of scab resistance QTLs.  相似文献   

4.
Drought is one of the main abiotic constraints in rice. A deep root system contributes efficiently to maintaining the water status of the crop through a stress period. After identifying QTLs affecting root parameters in a doubled-haploid (DH) population of rice derived from the cross IR64/Azucena, we started a marker-assisted backcross program to transfer the Azucena allele at four QTLs for deeper roots (on chromosomes 1, 2, 7 and 9) from selected DH lines into IR64. We selected the backcross progenies strictly on the basis of their genotypes at the marker loci in the target regions up to the BC3F2. We assessed the proportion of alleles remaining from Azucena in the non-target areas of the BC3F2 plants, which was in the range expected for the backcross stage reached. Twenty nine selected BC3F3 near-isogenic lines (NILs) were developed and compared to IR64 for the target root traits and three non-target traits in replicated experiments. Of the three tested NILs carrying target 1, one had significantly improved root traits over IR64. Three of the seven NILs carrying target 7 alone, as well as three of the eigth NILs carrying both targets 1 and 7, showed significantly improved root mass at depth. Four of the six NILs carrying target 9 had significantly improved maximum root length. Five NILs carrying target 2 were phenotyped, but none had a root phenotype significantly different from that of IR64. A re-analysis of the initial data with the composite interval mapping technique revealed two linked QTLs with opposite effects in this area. Some NILs were taller than IR64 and all had a decreased tiller number because of a likely co-introgression of linked QTLs. The usefulness of NILs, the efficiency of marker-aided selection for QTLs and the relationship between root traits are discussed. The NILs with an improved root system will permit testing the importance of root depth for water-limited environments. Received: 17 July 2000 / Accepted: 20 October 2000  相似文献   

5.
The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC2F3 populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC2F3 lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC2F3 line, environment and marker × environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer × T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.  相似文献   

6.
Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10°C but above 0°C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.  相似文献   

7.
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC1F1 plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs.  相似文献   

8.
Rapeseed (Brassica napus) is sensitive to low boron (B) stress and plentiful variation exists in response to B deficiency. One major QTL, BE1, and three minor loci controlling B efficiency in Brassica napus were previously detected. To fine map and clone the B-efficient gene (s), the development of B-efficient NILs in Brassica napus was conducted, combining the identification of B efficiency at seedling stage with genetic background selection using random AFLP markers. The molecular marker assisted background selection proved its optimum and necessary in an early backcrossing generation to select the backcross individuals with high genetic background similarity to accelerate the construction of NILs. Based on B efficiency investigated at seedling stage under the low B conditions, the B-efficient backcross line can produce biomass twice about the B-inefficient parent’s and show low B concentration and effective utilization of B under low B condition. Thus, the B efficiency might be attributed to the higher B utilization efficiency or less demand for B.  相似文献   

9.
Field resistance is defined as the resistance that allows effective control of a parasite under natural field conditions and is durable when exposed to new races of that parasite. To identify the genes for field resistance to rice blast, quantitative trait loci (QTLs) conferring field resistance to rice blast in Japanese upland rice were detected and mapped using RFLP and SSR markers. QTL analysis was carried out in F4 progeny lines from the cross between Nipponbare (moderately susceptible, lowland) and Owarihatamochi (resistant, upland). Two QTLs were detected on chromosome 4 and one QTL was detected on each of chromosomes 9 and 12. The phenotypic variation explained by each QTL ranged from 7.9 to 45.7% and the four QTLs explained 66.3% of the total phenotypic variation. Backcrossed progeny lines were developed to transfer the QTL with largest effect using the susceptible cultivar Aichiasahi as a recurrent parent. Among 82 F3 lines derived from the backcross, resistance segregated in the expected ratio of resistant 1 : heterozygous 2 : susceptible 1. The average score for blast resistance measured in the field was 4.2 ± 0.67, 7.5 ± 0.51and 8.2 ± 0.66, for resistant, heterozygous and susceptible groups, respectively. The resistance gene, designated pi21, was mapped on chromosome 4 as a single recessive gene between RFLP marker loci G271 and G317 at a distance of 5.0 cM and 8.5 cM, respectively. The relationship to previously reported major genes and QTLs conferring resistance to blasts, and the significance of marker-assisted selection to improve field resistance, are discussed. Received: 8 June 2000 / Accepted: 24 November 2000  相似文献   

10.
Application of marker-assisted backcrossing for gene introgression is still limited by the high costs of marker analysis. High-throughput (HT) assays promise to reduce these costs, but new selection strategies are required for their efficient implementation in breeding programs. The objectives of our study were to investigate the properties of HT marker systems compared to single-marker (SM) assays, and to develop optimal selection strategies for marker-assisted backcrossing with HT assays. We employed computer simulations with a genetic model consisting of 10 chromosomes of 160 cM length to investigate the introgression of a dominant target gene. We found that a major advantage of HT marker systems is that they can provide linkage maps with equally spaced markers, whereas the possibility to provide linkage maps with high marker densities smaller than 10 cM is only of secondary use in marker-assisted backcrossing. A three-stage selection strategy that combines selection for recombinants at markers flanking the target gene with SM assays and genome-wide background selection with HT markers in the first backcross generation was more efficient than genome-wide background selection with HT markers alone. Selection strategies that combine SM and HT assays were more efficient than genome-wide background selection with HT assays alone. This result was obtained for a broad range of cost ratios of HT and SM assays. A further considerable reduction of the costs could be achieved if the population size in the first backcross generation was twice the population size in generations BC2 and BC3 of a three-generation backcrossing program. We conclude that selection strategies combining SM and HT assays have the potential to greatly increase the efficiency and flexibility of marker-assisted backcrossing.  相似文献   

11.
Late leaf spot (LLS) and rust are two major foliar diseases of groundnut (Arachis hypogaea L.) that often occur together leading to 50–70% yield loss in the crop. A total of 268 recombinant inbred lines of a mapping population TAG 24 × GPBD 4 segregating for LLS and rust were used to undertake quantitative trait locus (QTL) analysis. Phenotyping of the population was carried out under artificial disease epiphytotics. Positive correlations between different stages, high to very high heritability and independent nature of inheritance between both the diseases were observed. Parental genotypes were screened with 1,089 simple sequence repeat (SSR) markers, of which 67 (6.15%) were found polymorphic. Segregation data obtained for these markers facilitated development of partial linkage map (14 linkage groups) with 56 SSR loci. Composite interval mapping (CIM) undertaken on genotyping and phenotyping data yielded 11 QTLs for LLS (explaining 1.70–6.50% phenotypic variation) in three environments and 12 QTLs for rust (explaining 1.70–55.20% phenotypic variation). Interestingly a major QTL associated with rust (QTLrust01), contributing 6.90–55.20% variation, was identified by both CIM and single marker analysis (SMA). A candidate SSR marker (IPAHM 103) linked with this QTL was validated using a wide range of resistant/susceptible breeding lines as well as progeny lines of another mapping population (TG 26 × GPBD 4). Therefore, this marker should be useful for introgressing the major QTL for rust in desired lines/varieties of groundnut through marker-assisted backcrossing.  相似文献   

12.
Grain weight, one of the three major components of rice yield, is largely determined by grain size, which is controlled by quantitative trait loci (QTLs). In a previous study, we identified qGS5 as a major QTL for grain width. Here, we report our identification of two more major grain-size QTLs (qGL3 and qGW2a) by using a recombinant inbred line (RIL) population from a cross of two indica varieties, ‘Zhenshan 97’ and ‘SLG’. To investigate the contribution of the three grain-size QTLs to final grain weight, we developed near-isogenic lines (NILs) NIL-qGL3, NIL-qGW2a, and NIL-qGS5 and used these to build the combined QTLs–NIL in the genetic background of ‘Zhenshan 97’ by marker-assisted selection and conventional backcrossing, respectively. A BCF2 population of 957 individuals was developed from the combined QTLs-NIL for further study of the genetic control of grain size. The QTL analysis revealed that qGW2a and qGL3 played more important roles in grain weight gain than qGS5. All three QTLs showed additive effects with respect to grain weight, with no interaction. These results clearly indicate that pyramiding of major grain-size QTLs is a useful approach for improving rice yield.  相似文献   

13.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Theor Appl Genet (1998) 97 : 170–180 Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

14.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

15.
Blackmold, caused by the fungus Alternaria alternata, is a major ripe fruit disease of processing tomatoes. Previously, we found blackmold resistance in a wild tomato (Lycopersicon cheesmanii) and quantitative trait loci (QTL) for resistance were mapped in an interspecific population. Five QTLs were selected for introgression from L. cheesmanii into cultivated tomato using marker-assisted selection (MAS). Restriction fragment length polymorphism and PCR-based markers flanking, and within, the chromosomal regions containing QTLs were used for MAS during backcross and selfing generations. BC1 plants heterozygous at the QTLs, and subsequent BC1S1 and BC1S2 lines possessing different homozygous combinations of alleles at the target QTLs, were identified using DNA markers. Field experiments were conducted in 1998 (with 80 marker-selected BC1S2 lines) and 1999 (with 151 marker-selected BC1S2 and BC1S3 lines) at three California locations. Blackmold resistance was assessed during both years, and horticultural traits were evaluated in 1999. The BC1S2 and BC1S3 lines containing L. cheesmanii alleles at the QTLs were associated with a large genetic variance for resistance to blackmold and moderate heritability, suggesting that significant genetic gain may be achieved by selection in this genetic material. L. cheesmanii alleles at three of the five introgressed QTLs showed a significant, positive effect on blackmold resistance. A QTL on chromosome 2 had the largest positive effect on blackmold resistance, alone and in combination with other QTLs, and was also associated with earliness, a positive horticultural trait. The other four QTLs were associated primarily with negative horticultural traits. Fine mapping QTLs using near isogenic lines could help determine if such trait associations are due to linkage drag or pleiotropy.  相似文献   

16.

Near isogenic lines (NILs) are ideal material for a variety of genetic studies including validation of specific QTL. In the present study, eight pairs of NILs for grain weight were developed, seven in the background of Raj3765, and one in the background of K9107. For this purpose, marker-assisted selection (MAS) was used for the transfer of three grain weight QTL (QGw.ccsu-1A.2, QGw.ccsu-1A.3 and QGw.ccsu-1B.1) that were earlier identified in our laboratory. Two genotypes of each of the eight pairs of NILs, differed for QTL alleles (QTLHgw derived from the donor parent and the QTLLgw derived from the recipient parent). Each pair of NILs involved a solitary QTL except one NIL, which differed for all the three QTL. The difference in thousand grain weight (TGW) in two NILs of an individual pair ranged from 2.8 to 7.5 g, thus validating the effect of the QTL for TGW, although the quantum of difference did not always match the phenotypic variance of the corresponding QTL. As expected, the NILs which involved all the three QTL had the maximum difference of 7.5 g in TGW, and the NILs which involved QTL, QGw.ccsu-1A.2 had minimum average difference of 2.8 g for TGW. The NILs produced during the present study may be used in future for MAS and for fine mapping of TGW QTL.

  相似文献   

17.
Development of quantitative trait loci (QTL) near isogenic lines is a crucial step to QTL isolation using the strategy of map-based cloning. In this study, a recombinant inbred line (RIL) population derived from two indica rice varieties, Zhenshan 97 and HR5, was employed to map QTL for spikelets per panicle (SPP). One major QTL (qSPP7) and three minor QTL (qSPP1, qSPP2 and qSPP3) were identified on chromosomes 7, 1, 2 and 3, respectively. Four sets of near isogenic lines (NILs) BC4F2 targeted for the four QTL were developed by following a standard procedure of consecutive backcross, respectively. These QTL were not only validated in corresponding NILs, but also explained amounts of phenotypic variation with much larger LOD scores compared with those identified in RILs. SPP in the four QTL-NILs expressed bimodal or discontinuous distributions and followed the expected segregation ratio of single Mendelian factor by progeny test. Finally, qSPP1, qSPP2, qSPP3 and qSPP7 were respectively mapped to a locus, 0.5 cM from MRG2746, 0.6 cM from MRG2762, 0.8 cM from RM49 and 0.7 cM from MRG4436, as co-dominant markers on the basis of progeny tests. These results indicate no matter how small effect minor QTL is, QTL may still express the characteristics of single Mendelian factor in NILs and isolation of minor QTL will be possible using high quality NILs. Pyramiding these QTL into a variety will largely enhance rice grain yield.  相似文献   

18.
QTL mapping with near-isogenic lines in maize   总被引:2,自引:0,他引:2  
A set of 89 near-isogenic lines (NILs) of maize was created using marker-assisted selection. Nineteen genomic regions, identified by restriction fragment length polymorphism loci and chosen to represent portions of all ten maize chromosomes, were introgressed by backcrossing three generations from donor line Tx303 into the B73 genetic background. NILs were genotyped at an additional 128 simple sequence repeat loci to estimate the size of introgressions and the amount of background introgression. Tx303 introgressions ranged in size from 10 to 150 cM, with an average of 60 cM. Across all NILs, 89% of the Tx303 genome is represented in targeted and background introgressions. The average proportion of background introgression was 2.5% (range 0–15%), significantly lower than the expected value of 9.4% for third backcross generation lines developed without marker-assisted selection. The NILs were grown in replicated field evaluations in two years to map QTLs for flowering time traits. A parallel experiment of testcrosses of each NIL to the unrelated inbred, Mo17, was conducted in the same environments to map QTLs in NIL testcross hybrids. QTLs affecting days to anthesis, days to silking, and anthesis-silk interval were detected in both inbreds and hybrids in both environments. The testing environments differed dramatically for drought stress, and different sets of QTLs were detected across environments. Furthermore, QTLs detected in inbreds were typically different from QTLs detected in hybrids, demonstrating the genetic complexity of flowering time. NILs can serve as a valuable genetic mapping resource for maize breeders and geneticists. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Phaeosphaeria leaf spot (PLS) is an important disease in tropical and subtropical maize (Zea mays, L.) growing areas, but there is limited information on its inheritance. Thus, this research was conducted to study the inheritance of the PLS disease in tropical maize by using QTL mapping and to assess the feasibility of using marker-assisted selection aimed to develop genotypes resistance to this disease. Highly susceptible L14-04B and highly resistant L08-05F inbred lines were crossed to develop an F2 population. Two-hundred and fifty six F2 plants were genotyped with 143 microsatellite markers and their F2:3 progenies were evaluated at seven environments. Ten plants per plot were evaluated 30 days after silk emergence following a rating scale, and the plot means were used for analyses. The heritability coefficient on a progeny mean basis was high (91.37%), and six QTL were mapped, with one QTL on chromosomes 1, 3, 4, and 6, and two QTL on chromosome 8. The gene action of the QTL ranged from additive to partial dominance, and the average level of dominance was partial dominance; also a dominance × dominance epistatic effect was detected between the QTL mapped on chromosome 8. The phenotypic variance explained by each QTL ranged from 2.91 to 11.86%, and the joint QTL effects explained 41.62% of the phenotypic variance. The alleles conditioning resistance to PLS disease of all mapped QTL were in the resistant parental inbred L08-05F. Thus, these alleles could be transferred to other elite maize inbreds by marker-assisted backcross selection to develop hybrids resistant to PLS disease.  相似文献   

20.
 To detect quantitative trait loci (QTLs) controlling seed dormancy, 98 BC1F5 lines (backcross inbred lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare were analyzed genetically. We used 245 RFLP markers to construct a framework linkage map. Five putative QTLs affecting seed dormancy were detected on chromosomes 3, 5, 7 (two regions) and 8, respectively. Phenotypic variations explained by each QTL ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total phenotypic variation in the BC1F5 lines. Except for those of the QTLs on chromosome 8, the Nipponbare alleles increased the germination rate. Five putative QTLs controlling heading date were detected on chromosomes 2, 3, 4, 6 and 7, respectively. The phenotypic variation explained by each QTL for heading date ranged from 5.7% to 23.4% and the five putative QTLs explained about 52% of the total phenotypic variation. The Nipponbare alleles increased the number of days to heading, except for those of two QTLs on chromosomes 2 and 3. The map location of a putative QTL for heading date coincided with that of a major QTL for seed dormancy on chromosome 3, although two major heading-date QTLs did not coincide with any seed dormancy QTLs detected in this study. Received: 10 October 1997 / Accepted: 12 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号