首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tian L  Meng C  Yan H  Zhao Q  Liu Q  Yan J  Han Y  Yuan H  Wang L  Yue W  Zhang Y  Li X  Zhu C  He Y  Zhang D 《PloS one》2011,6(12):e28794

Background

Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives.

Methods

Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data.

Results

Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents.

Conclusions

Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.  相似文献   

2.

Background

HIV-associated neurocognitive disorders (HAND) has been associated with the up-regulation of various oxidative stress pathways. Previous studies have linked the neuronal damage observed in individuals diagnosed with HAND to increased nitrotyrosine modification of neuronal proteins.

Materials and methods

Tyrosine nitration alters protein structure and function, affects biological half-life, and potentially prevents the phosphorylation of key tyrosine residues involved in signal transduction pathways. Therefore, in this study we employed proteomics-based experimental approaches to investigate nitrotyrosine-modified proteins in pooled cerebrospinal fluid (CSF) of individuals diagnosed with HAND. To identify specific nitrotyrosine-modified proteins in the CSF of individuals diagnosed with HAND, affinity purification and high-performance tandem mass spectrometry are utilized in a “bottom-up” proteomics approach.

Results

From tandem mass spectrometric analysis, we identified major proteins that underwent nitration as a result of nitro-oxidative stress in the CSF of individuals diagnosed with HAND. We also utilized analytical and biochemical techniques to characterize the expression and modification site of in vivo nitrated lipocalin-type prostaglandin-D synthase in HAND CSF.  相似文献   

3.

Objective

Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth.

Methods

Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri).

Results

Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups.

Conclusion

Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.  相似文献   

4.

Background

Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder.

Methods

Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology.

Results

There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity.

Discussion

Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network “connectivity at rest” intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.  相似文献   

5.
HIV-associated neurocognitive disorders are common in HIV-infected individuals, even in the combination antiretroviral therapy (c-ART) era. Several mechanisms are involved in neuronal damage, including chronic inflammation immune activation. Mammalian 2′-5′-oligoadenylate synthetase (OAS) genes are produced in response to interferon (IFN), mainly by monocytes, and exert their antiviral functions by activation of RNase L that degrades viral and cellular RNAs. In this study, we aimed at exploring OAS gene family RNA expression in simian immunodeficiency virus encephalitis (SIVE), in HIV-associated neurocognitive disorders (HAND), and in HIV-associate dementia (HAD). We analyzed three microarray datasets obtained from the NCBI in order to assess the expression levels of OAS gene family network in brain biopsies of macaques with SIVE vs uninfected animals, as well as post-mortem brain of individuals with HAND (on or off ART) vs uninfected controls and three brain regions of HIV-infected individuals with both neurocognitive impairment (HAD) and encephalitis (HIVE). All OAS genes were upregulated both in SIVE and in HAND. OAS expression was significantly higher in high-viremic individuals; increased expression levels persisted in cART subjects when compared to healthy controls. OAS gene network analysis showed that several genes belonging to the type I IFN pathway, especially CXCL10 and IFIT3, were similarly upregulated in SIVE/HAND. Furthermore, we identified a significant upregulation of OAS gene family RNA expression in basal ganglia, white matter, and frontal cortex of HIV-1, HAD, and HAD/HIVE patients compared to healthy subjects. OAS gene family expression is increased in brain sections from individuals with HAND, HAD, and HIVE as well as macaques with SIVE. OAS family expression is likely to be induced by IFN as a consequence of viral replication in the CNS. Its long-term upregulation may contribute to the chronic inflammatory status and neurocognitive impairment we still observe in virologically suppressed individuals on c-ART.  相似文献   

6.
The present study aimed to investigate changes in structural gray matter (GM) volume and functional amplitude of spontaneous low-frequency oscillations (LFO) and functional connectivity density in patients with subcortical vascular mild cognitive impairment (svMCI). Structural MRI and resting-sate functional MRI data were collected from 26 svMCI patients and 28 age- and gender-matched healthy controls. Structurally, widespread GM atrophy was found in the svMCI patients that resided primarily in frontal (e.g., the superior and middle frontal gyri and medial prefrontal cortex) and temporal (the superior and inferior temporal gyri) brain regions as well as several subcortical brain sites (e.g., the thalamus and the caudate). Functionally, svMCI-related changes were predominantly found in the default mode network (DMN). Compared with the healthy controls, the svMCI patients exhibited decreased LFO amplitudes in the anterior part of the DMN (e.g., the medial prefrontal cortex), whereas increased LFO amplitudes in the posterior part of the DMN (e.g., the posterior cingulate/precuneus). As for functional connectivity density, the DMN regions (e.g., the posterior cingulate/precuneus, the medial prefrontal cortex and the middle temporal gyrus) consistently exhibited decreased functional connectivity. Finally, the overall patterns of functional alterations in LFO amplitudes and functional connectivity density remained little changed after controlling for structural GM volume losses, which suggests that functional abnormalities can be only partly explained by morphological GM volume changes. Together, our results indicate that svMCI patients exhibit widespread abnormalities in both structural GM volume and functional intrinsic brain activity, which have important implications in understanding the pathophysiological mechanism of svMCI.  相似文献   

7.

Background

To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC) in patients with cirrhosis without overt hepatic encephalopathy (HE) using resting state functional MRI.

Methodology/Principal Findings

Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE) and 40 cirrhotic patients without MHE (non-HE)), and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs) were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST]) scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC), bilateral middle cingulate cortex (MCC), bilateral superior temporal gyri (STG)/middle temporal gyri (MTG), bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients.

Conclusions/Significance

Disrupted functional connectivity in ACC was found in cirrhotic patients which further deteriorated with the increasing severity of HE and correlated cognitive dysfunction in cirrhotic patients.  相似文献   

8.

Background

Neuroimaging studies in late life depression have reported decreased structural integrity of white matter tracts in the prefrontal cortex. Functional studies have identified changes in functional connectivity among several key areas involved in mood regulation. Few studies have combined structural and functional imaging. In this study we sought to examine the relationship between the uncinate fasciculus, a key fronto-temporal tract and resting state functional connectivity between the ventral prefrontal cortex ((PFC) and limbic and striatal areas.

Methods

The sample consisted of 24 older patients remitted from unipolar major depression. Each participant had a magnetic resonance imaging brain scan using standardized protocols to obtain both diffusion tensor imaging and resting state functional connectivity data. Our statistical approach compared structural integrity of the uncinate fasciculus and functional connectivity data.

Results

We found positive correlations between left uncinate fasciculus (UF) fractional anisotropy (FA) and resting state functional connectivity (rsFC) between the left ventrolateral PFC and left amygdala and between the left ventrolateral PFC and the left hippocampus. In addition, we found a significant negative correlation between left ventromedial PFC-caudate rsFC and left UF FA. The right UF FA did not correlate with any of the seed region based connectivity.

Conclusions

These results support the notion that resting state functional connectivity reflects structural integrity, since the ventral PFC is structurally connected to temporal regions by the UF. Future studies should include larger samples of patients and healthy comparison subjects in which both resting state and task-based functional connectivity are examined.  相似文献   

9.

Background

Reduced white matter (WM) integrity is a fundamental aspect of pediatric multiple sclerosis (MS), though relations to resting-state functional MRI (fMRI) connectivity remain unknown. The objective of this study was to relate diffusion-tensor imaging (DTI) measures of WM microstructural integrity to resting-state network (RSN) functional connectivity in pediatric-onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural integrity.

Methods

This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13–24 years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13 years) and 16 age- and sex-matched healthy controls (HC). All subjects underwent 3.0T anatomical and functional MRI which included DTI and resting-state acquisitions. DTI processing was performed using Tract-Based Spatial Statistics (TBSS). RSNs were identified using Independent Components Analysis, and a dual regression technique was used to detect between-group differences in the functional connectivity of RSNs. Correlations were investigated between DTI measures and RSN connectivity.

Results

Lower fractional anisotropy (FA) was observed in the pediatric-onset MS group compared to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected). Relative to HCs, MS patients showed higher functional connectivity involving the anterior cingulate cortex and right precuneus of the default-mode network, as well as involving the anterior cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncorrected, k≥30 voxels). Higher functional connectivity of the right precuneus within the default-mode network was associated with lower FA of the entire WM skeleton (r = -.525, p = .02), genu of the corpus callosum (r = -.553, p = .014), and left (r = -.467, p = .044) and right (r = -.615, p = .005) sagittal stratum.

Conclusions

Loss of WM microstructural integrity is associated with increased resting-state functional connectivity in pediatric MS, which may reflect a diffuse and potentially compensatory activation early in MS.  相似文献   

10.

Objectives

Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD). However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used resting-state functional MRI (fMRI) to investigate the functional connectivity changes of the basolateral amygdala (BLA) and centromedial amygdala (CMA) in the brain after 36 h of TSD.

Materials and Methods

Fourteen healthy adult men aged 25.9±2.3 years (range, 18–28 years) were enrolled in a within-subject crossover study. Using the BLA and CMA as separate seed regions, we examined resting-state functional connectivity with fMRI during rested wakefulness (RW) and after 36 h of TSD.

Results

TSD resulted in a significant decrease in the functional connectivity between the BLA and several executive control regions (left dorsolateral prefrontal cortex [DLPFC], right dorsal anterior cingulate cortex [ACC], right inferior frontal gyrus [IFG]). Increased functional connectivity was found between the BLA and areas including the left posterior cingulate cortex/precuneus (PCC/PrCu) and right parahippocampal gyrus. With regard to CMA, increased functional connectivity was observed with the rostral anterior cingulate cortex (rACC) and right precentral gyrus.

Conclusion

These findings demonstrate that disturbance in amygdala related circuits may contribute to TSD psychophysiology and suggest that functional connectivity studies of the amygdala during the resting state may be used to discern aberrant patterns of coupling within these circuits after TSD.  相似文献   

11.
Ge J  Han S 《PloS one》2008,3(7):e2797
Although humans have inevitably interacted with both human and artificial intelligence in real life situations, it is unknown whether the human brain engages homologous neurocognitive strategies to cope with both forms of intelligence. To investigate this, we scanned subjects, using functional MRI, while they inferred the reasoning processes conducted by human agents or by computers. We found that the inference of reasoning processes conducted by human agents but not by computers induced increased activity in the precuneus but decreased activity in the ventral medial prefrontal cortex and enhanced functional connectivity between the two brain areas. The findings provide evidence for distinct neurocognitive strategies of taking others' perspective and inhibiting the process referenced to the self that are specific to the comprehension of human intelligence.  相似文献   

12.
《IRBM》2021,42(6):457-465
Background and objectiveBased on magnetic resonance imaging (MRI), macroscopic structural and functional connectivity of human brain has been widely explored in the last decade. However, little work has been done on effective connectivity between individual brain parcels. In this preliminary study, we aim to investigate whole-brain effective connectivity networks from resting-state functional MRI (rs-fMRI) images.Material and methodsAfter the functional connectivity networks of 26 healthy subjects (aged from 25 to 35 years old) from Human Connectome Project database were derived from rs-fMRI images with dynamic time warping, proportional thresholding (PT) was performed on the functional connectivity matrices by retaining the PT% strongest functional connections. PT% ranges from 40% to 10% in steps of 5%. Then, effective connections corresponding to the PT% strongest functional connections, both bi-directional and unidirectional, were estimated with Renyi's 2-order transfer entropy (TE) method. Topological metrics of the built functional and effective connectivity networks were further characterized, including clustering coefficient, transitivity, and modularity.ResultsIt is found that the effective connectivity networks exhibit small world attributes, and that the networks contain a subset of highly interactive regions, including right frontal pole (in-degree 6), left middle frontal gyrus (in-degree 8, out-degree 1), right precentral gyrus (out-degree 9), left precentral gyrus (out-degree 7), right posterior division of supramarginal gyrus (in-degree 2, out-degree 3), left angular gyrus (out-degree 6), left inferior division of lateral occipital cortex (out-degree 6), right occipital pole (in-degree 5), right cerebellum 7b parcel (in-degree 15), and right cerebellum 8 parcel (in-degree 7, out-degree 1).ConclusionsThe observations in this study provide information about the casual interactions among brain parcels in resting state, helping reveal how different subregions of large-scale distributed neural networks are coupled together in performing cognitive functions.  相似文献   

13.

Background and Purpose

Cognitive impairment is a well-described phenomenon in end-stage renal disease (ESRD) patients. However, its pathogenesis remains poorly understood. The primary focus of this study was to examine structural and functional brain deficits in ESRD patients.

Materials and Methods

Thirty ESRD patients on hemodialysis (without clinical neurological disease) and 30 age- and gender-matched control individuals (without renal or neurological problems) were recruited in a prospective, single-center study. High-resolution structural magnetic resonance imaging (MRI) and resting state functional MRI were performed on both groups to detect the subtle cerebral deficits in ESRD patients. Voxel-based morphometry was used to characterize gray matter deficits in ESRD patients. The impact of abnormal morphometry on the cerebral functional integrity was investigated by evaluating the alterations in resting state functional connectivity when brain regions with gray matter volume reduction were used as seed areas.

Results

A significant decrease in gray matter volume was observed in ESRD patients in the bilateral medial orbito-prefrontal cortices, bilateral dorsal lateral prefrontal cortices, and the left middle temporal cortex. When brain regions with gray matter volume reduction were used as seed areas, the integration was found to be significantly decreased in ESRD patients in the fronto-cerebellum circuits and within prefrontal circuits. In addition, significantly enhanced functional connectivity was found between the prefrontal cortex and the left temporal cortex and within the prefrontal circuits.

Conclusions

Our study revealed that both the structural and functional cerebral cortices were impaired in ESRD patients on routine hemodialysis.  相似文献   

14.
15.

Background

Brain tumor patients often associated with losses of the small-world configuration and neurocognitive functions before operations. However, few studies were performed on the impairments of frontal lobe low-grade gliomas (LGG) after tumor resection using small-world network features.

Methodology/Principal Findings

To detect differences in the whole brain topology among LGG patients before and after operation, a combined study of neurocognitive assessment and graph theoretical network analysis of fMRI data was performed. We collected resting-state fMRI data of 12 carefully selected frontal lobe LGG patients before and after operation. We calculated the topological properties of brain functional networks in the 12 LGG, and compared with 12 healthy controls (HCs). We also applied Montreal Cognitive Assessment (MoCA) in a subset of patients (n = 12, including before and after operation groups) and HCs (n = 12). The resulting functional connectivity matrices were constructed for all 12 patients, and binary network analysis was performed. In the range of , the functional networks in preoperative LGG and postoperative one both fitted the definition of small-worldness. We proposed as small-world network interval, and the results showed that the topological properties were found to be disrupted in the two LGG groups, meanwhile the global efficiency increased and the local efficiency decreased. in the two LGG groups both were longer than HCs. in the LGG groups were smaller than HCs. Compared with the Hcs, MoCA in the two LGG groups were lower than HCs with significant difference, and the disturbed networks in the LGG were negatively related to worse MoCA scores.

Conclusions

Disturbed small-worldness preperty in the two LGG groups was found and widely spread in the strength and spatial organization of brain networks, and the alterated small-world network may be responsible for cognitive dysfunction in frontal lobe LGG patients.  相似文献   

16.

Objectives

The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections, which hold a key function in segregating internally and externally directed awareness information. Previous task-related studies have revealed altered activities of the thalamus after total sleep deprivation (TSD). However, it is still unclear how TSD impacts on the communication between the thalamus and cerebral cortex. In this study, we examined changes of thalamocortical functional connectivity after 36 hours of total sleep deprivation by using resting state function MRI (fMRI).

Materials and Methods

Fourteen healthy volunteers were recruited and performed fMRI scans before and after 36 hours of TSD. Seed-based functional connectivity analysis was employed and differences of thalamocortical functional connectivity were tested between the rested wakefulness (RW) and TSD conditions.

Results

We found that the right thalamus showed decreased functional connectivity with the right parahippocampal gyrus, right middle temporal gyrus and right superior frontal gyrus in the resting brain after TSD when compared with that after normal sleep. As to the left thalamus, decreased connectivity was found with the right medial frontal gyrus, bilateral middle temporal gyri and left superior frontal gyrus.

Conclusion

These findings suggest disruptive changes of the thalamocortical functional connectivity after TSD, which may lead to the decline of the arousal level and information integration, and subsequently, influence the human cognitive functions.  相似文献   

17.
R Qi  Q Xu  LJ Zhang  J Zhong  G Zheng  S Wu  Z Zhang  W Liao  Y Zhong  L Ni  Q Jiao  Z Zhang  Y Liu  G Lu 《PloS one》2012,7(7):e41376

Background and Purpose

Live failure can cause brain edema and aberrant brain function in cirrhotic patients. In particular, decreased functional connectivity within the brain default-mode network (DMN) has been recently reported in overt hepatic encephalopathy (HE) patients. However, so far, little is known about the connectivity among the DMN in the minimal HE (MHE), the mildest form of HE. Here, we combined diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) to test our hypothesis that both structural and functional connectivity within the DMN were disturbed in MHE.

Materials and Methods

Twenty MHE patients and 20 healthy controls participated in the study. We explored the changes of structural (path length, tracts count, fractional anisotropy [FA] and mean diffusivity [MD] derived from DTI tractography) and functional (temporal correlation coefficient derived from rs-fMRI) connectivity of the DMN in MHE patients. Pearson correlation analysis was performed between the structural/functional indices and venous blood ammonia levels/neuropsychological tests scores of patients. All thresholds were set at P<0.05, Bonferroni corrected.

Results

Compared to the healthy controls, MHE patients showed both decreased FA and increased MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN) to left parahippocampal gyrus (PHG), and decreased functional connectivity between the PCC/PCUN and left PHG, and medial prefrontal cortex (MPFC). MD values of the tract connecting PCC/PCUN to the left PHG positively correlated to the ammonia levels, the temporal correlation coefficients between the PCC/PCUN and the MPFC showed positive correlation to the digital symbol tests scores of patients.

Conclusion

MHE patients have both disturbed structural and functional connectivity within the DMN. The decreased functional connectivity was also detected between some regions without abnormal structural connectivity, suggesting that the former may be more sensitive in detecting the early abnormalities of MHE. This study extends our understanding of the pathophysiology of MHE.  相似文献   

18.
Complementary structural and functional neuroimaging techniques used to examine the Default Mode Network (DMN) could potentially improve assessments of psychiatric illness severity and provide added validity to the clinical diagnostic process. Recent neuroimaging research suggests that DMN processes may be disrupted in a number of stress-related psychiatric illnesses, such as posttraumatic stress disorder (PTSD).Although specific DMN functions remain under investigation, it is generally thought to be involved in introspection and self-processing. In healthy individuals it exhibits greatest activity during periods of rest, with less activity, observed as deactivation, during cognitive tasks, e.g., working memory. This network consists of the medial prefrontal cortex, posterior cingulate cortex/precuneus, lateral parietal cortices and medial temporal regions.Multiple functional and structural imaging approaches have been developed to study the DMN. These have unprecedented potential to further the understanding of the function and dysfunction of this network. Functional approaches, such as the evaluation of resting state connectivity and task-induced deactivation, have excellent potential to identify targeted neurocognitive and neuroaffective (functional) diagnostic markers and may indicate illness severity and prognosis with increased accuracy or specificity. Structural approaches, such as evaluation of morphometry and connectivity, may provide unique markers of etiology and long-term outcomes. Combined, functional and structural methods provide strong multimodal, complementary and synergistic approaches to develop valid DMN-based imaging phenotypes in stress-related psychiatric conditions. This protocol aims to integrate these methods to investigate DMN structure and function in PTSD, relating findings to illness severity and relevant clinical factors.  相似文献   

19.
Z Wang  Z Zhang  Q Jiao  W Liao  G Chen  K Sun  L Shen  M Wang  K Li  Y Liu  G Lu 《PloS one》2012,7(7):e39701

Objective

Neuroimaging evidence suggested that the thalamic nuclei may play different roles in the progress of idiopathic generalized epilepsy (IGE). This study aimed to demonstrate the alterations in morphometry and functional connectivity in the thalamic nuclei in IGE.

Methods

Fifty-two patients with IGE characterized by generalized tonic-clonic seizures and 67 healthy controls were involved in the study. The three-dimensional high-resolution T1-weighted MRI data were acquired for voxel-based morphometry (VBM) analysis, and resting-state blood-oxygenation level functional MRI data were acquired for functional connectivity analysis. The thalamic nuclei of bilateral medial dorsal nucleus (MDN) and pulvinar, as detected with decreased gray matter volumes in patients with IGE through VBM analysis, were selected as seed regions for functional connectivity analysis.

Results

Different alteration patterns were found in functional connectivity of the thalamic nuclei with decreased gray matter volumes in IGE. Seeding at the MDN, decreased connectivity in the bilateral orbital frontal cortex, caudate nucleus, putamen and amygdala were found in the patients (P<0.05 with correction). However, seeding at the pulvinar, no significant alteration of functional connectivity was found in the patients (P<0.05 with correction).

Conclusions

Some specific impairment of thalamic nuclei in IGE was identified using morphological and functional connectivity MRI approaches. These findings may strongly support the different involvement of the thalamocortical networks in IGE.  相似文献   

20.
目的 偏头痛是一种复杂的脑功能障碍性疾病,全球范围内患病率为14.4%。功能连接测量两个神经信号之间的统计学相互依赖性,不同的功能连接反映了大脑区域协同工作的不同模式。因此,研究不同脑区的功能连接对于理解偏头痛的病理生理机制具有十分重要的意义。以往基于脑电图对偏头痛患者脑功能连接的分析主要集中在视觉和疼痛刺激。本文尝试研究偏头痛患者在发作间期对体感刺激的皮质反应,以进一步了解偏头痛的神经功能障碍,为偏头痛的预防和治疗提供线索。方法 招募23例无先兆偏头痛患者,10例有先兆偏头痛患者,28名健康对照者。所有受试者均进行详细的基本资料和病史采集,完善量表评估,在正中神经体感刺激下进行脑电图记录。计算68个脑区的相干性作为功能连接,并评估功能连接与临床参数的相关性。结果 在正中神经体感刺激下,无先兆偏头痛和有先兆偏头痛患者的脑电功能连接与对照组相比存在差异,异常的脑电功能连接主要位于感觉辨别、疼痛调节、情绪认知和视觉处理等区域。无先兆偏头痛和有先兆偏头痛患者的大脑皮层对体感刺激可能具有相同的反应方式。偏头痛患者的功能连接异常与临床特征之间存在相关性,可以部分反映偏头痛的严重程度。结论 本研究...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号