首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background and aims

Myxodiaspores have been shown to enhance soil-seed contact and improve soil stability. We aim to demonstrate the effect of myxodiaspory on the stability of soil aggregates and gain insight on the nature of bonds.

Methods

Mucilage extracted from chia (Salvia hispanica L.) fruits after hydration was mixed with three soils (sandy-loam, loam, clay loam), incubated and tested at different times up to 30 days. We measured aggerate stability by wet sieving and the dynamics of soil CO2 evolution. SEM imaging and 13CPMAS spectroscopy of mucilage were performed in order to infer mechanisms of soil stabilization.

Results

The incorporation of mucilage resulted in a dose- and soil-dependent rise in aggregate stability. The dose of 2% mucilage overcame textural effects on soil aggregate stability by providing a 2.3-fold stability increase in the loam and clay-loam and a 4.9-fold increase in the sandy-loam compared to control. The effect persisted after 30 days in spite of C losses due to soil respiration. Mechanisms of soil bonding analogous to xanthan can be inferred from SEM imaging and 13C–CPMAS, since the mucilage was identified as a biopolymer containing 93.39% carbohydrates and 22.02% uronic acids.

Conclusions

We demonstrate that mucilage extruded by hydrated diaspores strongly increases soil aggregate stability. This represents a potentially important ecosystem service provided by myxodiasporous crops during germination. Our findings confirm potential applications of mucilage from myxodiaspores as natural soil stabilizers.
  相似文献   

2.
Eviner  Valerie T.  Stuart Chapin  F. 《Plant and Soil》2002,246(2):211-219
We tested the effects of plant species, fertilization and elevated CO2 on water-stable soil aggregation. Five annual grassland species and a plant community were grown in outdoor mesocosms for 4 years, with and without NPK fertilization, at ambient or elevated atmospheric CO2 concentrations. Aggregate stability (resistance of aggregates to slaking) in the top 0.15 m of soil differed among plant species. However, the more diverse plant community did not enhance aggregate stability relative to most monocultures. Species differences in aggregate stability were positively correlated with soil active bacterial biomass, but did not correlate with root biomass or fungal length. Plant species did not affect aggregate stability lower in the soil profile (0.15–0.45 m), where soil biological activity is generally decreased. Elevated CO2 and NPK fertilization altered many of the factors known to influence aggregation, but did not affect water-stable aggregation at either depth, in any of the plant treatments. These results suggest that global changes will alter soil structure primarily due to shifts in vegetation composition.  相似文献   

3.
植被恢复对黄土区煤矿排土场土壤团聚体特征的影响   总被引:6,自引:0,他引:6  
唐骏  党廷辉  薛江  文月荣  徐娜  吴得峰 《生态学报》2016,36(16):5067-5077
目前关于植被恢复对排土场土壤团聚性的影响还不清楚,以植被恢复下黄土区露天煤矿排土场为研究对象,采用湿筛法测定了排土场土壤水稳性团聚体组成,研究了植被恢复类型(草地、灌木)和排土场地形(平台、边坡)对土壤团聚体特征的影响。结果表明:植被恢复促进了排土场水稳性团聚体的形成,平台0—20 cm土层水稳性大团聚体数量(R_(0.25))、平均重量直径(MWD)和几何平均直径(GMD)分别达到31.1%,0.70 mm和0.26 mm,边坡分别达到13.3%,0.37 mm和0.17 mm,均显著高于裸地,分形维数(D)在平台和边坡分别为2.91和2.96,均显著低于裸地;平台土壤团聚性要好于边坡,草地对于平台土壤团聚结构改良效果较好,而灌木对于边坡改良效果较好;排土场土壤有机碳和粘粒含量均与土壤团聚体指标有显著相关性。植被恢复提高了排土场土壤团聚性,植被恢复类型和地形对排土场土壤团聚体特征有显著影响。  相似文献   

4.
Soil structure stability was studied in every diagnostic horizons of six soil types (Haplic Chernozem, Greyic Phaeozem, two Haplic Luvisols, Haplic Cambisol, Dystric Cambisol) using different techniques investigating various destruction mechanisms of soil aggregates. Soil aggregate stability, assessed by the index of water stable aggregates (WSA), varied depending on the organic matter content, clay content and pHKCl. The presence of clay and organic matter coatings and fillings, and presence of iron oxides in some soils increased stability of soil aggregates. On the other hand periodical tillage apparently decreased aggregate stability in the Ap horizons. Coefficients of aggregate vulnerability resulting from fast wetting (KV 1) and slow wetting (KV 2) tests showed similar trends of the soil aggregate stability as the WSA index, when studied for soils developed on the similar parent material. There was found close correlation between the WSA index and the KV 1 value, which depended also on the organic matter content, clay content and pHKCl. Less significant correlation was obtained between the WSA index and the KV 2 value, which depended on the organic matter content and clay content. Coefficients of vulnerability resulting from the shaking after pre-wetting test (KV 3) showed considerably different trends in comparison to the other tests due to the different factors affecting aggregate stability against the mechanical destruction. The KV 3 value depended mostly on cation exchange capacity, pHKCl and organic matter content.  相似文献   

5.
Nutrient‐poor grassland on a silty clay loam overlying calcareous debris was exposed to elevated CO2 for six growing seasons. The CO2 exchange and productivity were persistently increased throughout the experiment, suggesting increases in soil C inputs. At the same time, elevated CO2 lead to increased soil moisture due to reduced evapotransporation. Measurements related to soil microflora did not indicate increased soil C fluxes under elevated CO2. Microbial biomass, soil basal respiration, and the metabolic quotient for CO2 (qCO2) were not altered significantly. PLFA analysis indicated no significant shift in the ratio of fungi to bacteria. 0.5 m KCl extractable organic C and N, indicators of changed DOC and DON concentrations, also remained unaltered. Microbial grazer populations (protozoa, bacterivorous and fungivorous nematodes, acari and collembola) and root feeding nematodes were not affected by elevated CO2. However, total nematode numbers averaged slightly lower under elevated CO2 (?16%, ns) and nematode mass was significantly reduced (?43%, P = 0.06). This reduction reflected a reduction in large‐diameter nematodes classified as omnivorous and predacious. Elevated CO2 resulted in a shift towards smaller aggregate sizes at both micro‐ and macro‐aggregate scales; this was caused by higher soil moisture under elevated CO2. Reduced aggregate sizes result in reduced pore neck diameters. Locomotion of large‐diameter nematodes depends on the presence of large enough pores; the reduction in aggregate sizes under elevated CO2 may therefore account for the decrease in large nematodes. These animals are relatively high up the soil food web; this decline could therefore trigger top‐down effects on the soil food web. The CO2 enrichment also affected the nitrogen cycle. The N stocks in living plants and surface litter increased at elevated CO2, but N in soil organic matter and microbes remained unaltered. Nitrogen mineralization increased markedly, but microbial N did not differ between CO2 treatments, indicating that net N immobilization rates were unaltered. In summary, this study did not provide evidence that soils and soil microbial communities are affected by increased soil C inputs under elevated CO2. On the contrary, available data (13C tracer data, minirhizotron observations, root ingrowth cores) suggests that soil C inputs did not increase substantially. However, we provide first evidence that elevated CO2 can reduce soil aggregation at the scale from µ m to mm scale, and that this can affect soil microfaunal populations.  相似文献   

6.
刘雷  安韶山  黄华伟 《生态学报》2013,33(20):6670-6680
植被类型直接影响土壤特性,对土壤团聚体的形成和稳定性有重要影响,水稳性团聚体是反映黄土高原土壤抗蚀性的最佳指标。本文选择黄土丘陵区延河流域作为研究区域,应用Le Bissonnais(LB)法和Yoder法测定了森林、森林草原两种植被类型下土壤水稳性团聚体稳定性,对比分析了LB法3种处理的结果,并计算土壤团聚体平均重量直径(MWD)和可蚀性因子K值。结果表明:在LB法3种湿润处理下,预湿后扰动处理(WS)对土壤团聚体结构的破坏程度最大,处理后土壤水稳性团聚体以<0.2 mm为主;快速湿润处理(FW)对团聚体的破坏程度次之;慢速湿润处理(SW)对团聚体的破坏程度最小,处理后土壤水稳性团聚体主要以>2 mm团聚体为主;说明黄土丘陵区延河流域土壤团聚体破坏的主要机制是气爆作用(消散作用)和机械扰动。LB法的3种处理结果中预湿后扰动的测定结果与传统的湿筛法(Yoder法)更接近。LB法包含Yoder法的基本原理,能够全面、准确的测定土壤团聚体结构,适宜作为黄土丘陵区土壤团聚体测定方法。森林植被类型的土壤团聚体平均重量直径(MWD)大于森林草原植被类型,而且SW>FW>WS,但可蚀性因子K值却是森林植被类型小于森林草原植被类型。土壤水稳性团聚体由小颗粒向大颗粒转变,土壤结构趋于稳定。不同植被类型下土壤有机质含量不同,土壤团聚体形成过程及土壤团聚度也有差异,因而造成土壤可蚀性和土壤抗蚀性能不同。  相似文献   

7.
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.  相似文献   

8.
Effects of gamma irradiation on soil aggregate stability   总被引:1,自引:0,他引:1  
Summary Four soils, with a range of natural aggregate stability, were used to compare the effects of gamma irradiation on the stability of natural aggregates and of synthetic aggregates containing 0.5 per cent microbial polysaccharide. The stability of natural aggregates was not significantly affected by irradiation but that of the synthetic aggregates (prepared from the same soils) was significantly reduced, the magnitude of the reduction being negatively correlated with the clay content of the soil.  相似文献   

9.
Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO2 concentrations (eCO2) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long‐term experiment (7 yr at the time of sampling) in which a C4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO2. Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra‐aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N‐dependent changes as atmospheric CO2 concentrations rise, having global‐scale implications for water balance, carbon storage, and related rhizosphere functions.  相似文献   

10.
程曼  朱秋莲  刘雷  安韶山 《生态学报》2013,33(9):2835-2844
土壤团聚作用和土壤有机碳固定之间密切相关.对宁南山区不同植被恢复措施和年限下土壤团聚体粒径分布及稳定性、土壤团聚体中有机碳及其组分分布进行了研究,探讨了有机碳及其组分对植被恢复的响应.结果表明,不同植被恢复措施下,土壤团聚体粒径分布表现为“V”字分布:>5 mm和<0.25 mm这两个粒径的团聚体含量最多,5-2 mm、1-0.25 mm团聚体的含量次之,2-1 mm粒径的团聚体含量最少.坡耕地的平均重量直径(MWD)最低,为1.4,其他植被恢复措施下土壤的平均重量直径MWD在1.9-3.1之间.不同的植被恢复措施下,0-20 cm土层和20-40 cm土层全土有机碳含量在7.4-17.7 g/kg之间、微生物碳含量分布在50.3-664.7 mg/kg之间、腐殖质碳含量在0.9-2.5g/kg之间.胡敏酸碳含量分布在0.2-0.6 g/kg,富里酸碳含量在0.6-1.9 g/kg之间.全土有机碳、微生物碳、腐殖质碳、富里酸碳均为坡耕地最低,其他植被恢复措施的有机碳、微生物碳、腐殖质碳、富里酸碳含量分别是坡耕地的1.1-2.3倍、2.0-8.4倍、1.0-2.0倍、1.2-2.4倍.不同粒径团聚体有机碳相比较,大多呈现中间高两边低的变化趋势,最大值出现在中间粒径,即5-2 mm、2-1 mm、1-0.25 mm这3个粒径.逐步回归表明,5-2 mm团聚体和1-0.25 mm团聚体有机碳含量的提高有助于土壤水稳性团聚体的形成.研究结果表明,植被恢复提高了土壤团聚体有机碳含量,在碳形态上,富里酸碳和微生物生物量碳对不同植被恢复措施的敏感度较高,胡敏酸碳含量则相对稳定.  相似文献   

11.
Liang  B.C.  Gregorich  E.G.  MacKenzie  A.F. 《Plant and Soil》1999,208(2):227-232
Studies of soil organic matter equilibria must include estimates of C turnover. The objective of this study was to provide data on how the natural 13C abundance method can be used to determine the flow of C from C4 residues and soil organic matter (C3-source) in a short-term incubation. Corn residue was added at a rate of 5.7 mg C g−1 soil to two soils, a clay and a sandy clay loam. During the course of a 35-day incubation in a CO2-free system, CO2-C and 13C natural abundance of the respired CO2 were measured. About 20% of the corn residue-C added was mineralized in both soils as determined from the CO2 respired and the 13C natural abundance of the respired CO2. Mineralization of the added residues was also calculated as the difference of the total amount of the respired CO2-C between the control and the corn residue-treated soils divided by the total amount of corn residue-C. Values were 35% for the clay soil, and 30% for the sandy clay loam soil. The difference in values calculated from the 13 C natural abundance and the difference method was due to mineralization of the indigenous soil organic C resulting from the addition of corn residues. Use of the natural 13C abundance method could determine the degree of ‘priming effect’ in soils amended with C4-C residues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
以福建省三明市本底条件一致的三片林分的土壤作为研究对象,采用湿筛法测定了水稳定性团聚体粒径分布,分析了不同形态铁铝氧化物含量与0.25 mm大团聚体数量及团聚体平均重量直径(MWD)的关系。结果表明:(1)不同形态铁铝氧化物含量呈现出米槠次生林米槠人工林杉木人工林,游离结晶态(Fed、Ald)无定形(Feo、Alo)络合态(Fes、Als)。(2)0.25 mm大团聚体含量呈现米槠次生林米槠人促林杉木人工林,林分之间差异显著,MWD值的趋势与之相似。(3)线性回归分析表明:不同形态铁铝氧化物均与0.25 mm水稳定性大团聚体数量及MWD值达到显著甚至极显著相关,但通过分析相关系数R和显著性P说明氧化铝可能比氧化铁更有助于大团聚体的形成与稳定,无定形及络合态铁铝氧化物比游离态铁铝氧化物更能促进大团聚体的形成与稳定。  相似文献   

13.
Changes in soil hydration status affect microbial community dynamics and shape key biogeochemical processes. Evidence suggests that local anoxic conditions may persist and support anaerobic microbial activity in soil aggregates (or in similar hot spots) long after the bulk soil becomes aerated. To facilitate systematic studies of interactions among environmental factors with biogeochemical emissions of CO2, N2O and CH4 from soil aggregates, we remolded silt soil aggregates to different sizes and incorporated carbon at different configurations (core, mixed, no addition). Assemblies of remolded soil aggregates of three sizes (18, 12, and 6 mm) and equal volumetric proportions were embedded in sand columns at four distinct layers. The water table level in each column varied periodically while obtaining measurements of soil GHG emissions for the different aggregate carbon configurations. Experimental results illustrate that methane production required prolonged inundation and highly anoxic conditions for inducing measurable fluxes. The onset of unsaturated conditions (lowering water table) resulted in a decrease in CH4 emissions while temporarily increasing N2O fluxes. Interestingly, N2O fluxes were about 80% higher form aggregates with carbon placement in center (anoxic) core compared to mixed carbon within aggregates. The fluxes of CO2 were comparable for both scenarios of carbon sources. These experimental results highlight the importance of hydration dynamics in activating different GHG production and affecting various transport mechanisms about 80% of total methane emissions during lowering water table level are attributed to physical storage (rather than production), whereas CO2 emissions (~80%) are attributed to biological activity. A biophysical model for microbial activity within soil aggregates and profiles provides a means for results interpretation and prediction of trends within natural soils under a wide range of conditions.  相似文献   

14.
The contribution of lignin to the formation of humic compounds was examined in different environments of the terrestrial-aquatic interface in the Garonne River valley in southwestern France. Alluvial soils and submerged or nonsubmerged river and pond sediments containing alder, poplar, or willow [14C-lignin]ligno-celluloses were incubated. After a 49-day incubation period, 10 to 15% of labeled lignins in alluvial soils was recovered as evolved 14CO2. In nonsubmerged sediments, 10% of the applied activity was released as 14CO2, and in submerged sediments, only 5% was released after 60 days of incubation. In the different alluvial soils and sediments, the bulk of residual activity (70 to 85%) remained in the two coarsest-grain fractions (2,000 to 100 and 100 to 50 μm). Only 2 to 6% of the residual activity of these two coarse fractions was recovered as humic and fulvic acids, except in the case of alder [14C-lignin]lignocellulose, which had decomposed in a soil collected beneath alders. In this one 55% of the residual activity was extracted as humic substances from the 2,000- to 100-μm fraction. Humic and fulvic acids represented from 6 to 50% of the residual activity in the finest-grain fractions (50 to 20 and 20 to 0 μm). The highest percentages were obtained in soil collected beneath alders and in submerged pond sediment. The contribution of different groups of microorganisms, as well as nutrients and clay content, may influence humic-substance formation in such environments. Physical stability also may be an important factor for complex microbial activity involved in this process.  相似文献   

15.
The input and fate of new C in two forest soils under elevated CO2   总被引:2,自引:0,他引:2  
The aim of this study was to estimate (i) the influence of different soil types on the net input of new C into soils under CO2 enrichment and (ii) the stability and fate of these new C inputs in soils. We exposed young beech–spruce model ecosystems on an acidic loam and calcareous sand for 4 years to elevated CO2. The added CO2 was depleted in 13C, allowing to trace new C inputs in the plant–soil system. We measured CO2‐derived new C in soil C pools fractionated into particle sizes and monitored respiration as well as leaching of this new C during incubation for 1 year. Soil type played a crucial role in the partitioning of C. The net input of new C into soils under elevated CO2 was about 75% greater in the acidic loam than in the calcareous sand, despite a 100% and a 45% greater above‐ and below‐ground biomass on the calcareous sand. This was most likely caused by a higher turnover of C in the calcareous sand as indicated by 30% higher losses of new C from the calcareous sand than from the acidic loam during incubation. Therefore, soil properties determining stabilization of soil C were apparently more important for the accumulation of C in soils than tree productivity. Soil fractionation revealed that about 60% of the CO2‐derived new soil C was incorporated into sand fractions. Low natural 13C abundance and wide C/N ratios show that sand fractions comprise little decomposed organic matter. Consistently, incubation indicated that new soil C was preferentially respired as CO2. During the first month, evolved CO2 consisted to 40–55% of new C, whereas the fraction of new C in bulk soil C was 15–23% only. Leaching of DOC accounted for 8–23% of the total losses of new soil C. The overall effects of CO2 enrichment on soil C were small in both soils, although tree growth increased significantly on the calcareous sand. Our results suggest that the potential of soils for C sequestration is limited, because only a small fraction of new C inputs into soils will become long‐term soil C.  相似文献   

16.
Many techniques for quantifying microbial biodegradation of 14C-labeled compounds use soil-water slurries and trap mineralization-derived 14CO2 in solution wells suspended within the incubation flasks. These methods are not satisfactory for studies of arid-region soils that are highly calcareous and unsaturated because (i) slurries do not simulate unsaturated conditions and (ii) the amount of CO2 released from calcareous soils exceeds the capacity of the suspended well. This report describes simple, inexpensive methodological modifications for quantifying microbial degradation of [14C]benzene and 1,2-dichloro[U-14C]ethane in calcareous soils under unsaturated conditions. Soils at 50% water holding capacity were incubated with labeled contaminants for periods up to 10 weeks, followed by acidification of the soil and trapping of the evolved CO2 in a separate container of 2 N NaOH. The CO2 was transferred from the incubation flask to the trap solution by a gas transfer shunt containing activated charcoal to remove any volatilized labeled organics. The amount of 14CO2 in the trap solution was measured by scintillation counting (disintegrations per minute). The method was tested by using two regional unamended surface soils, a sandy aridisol and a clay-rich riparian soil. The results demonstrated that both [14C]benzene and 1,2-dichloro[U-14C]ethane were mineralized to release substantial amounts of 14CO2 within 10 weeks. Levels of mineralization varied with contaminant type, soil type, and aeration status (anaerobic vs. aerobic); no significant degradation was observed in abiotic control samples. Methodological refinements of this technique resulted in total 14CO2 recovery efficiency of approximately 90%.  相似文献   

17.
It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2–50 µm), and clay (<2 µm) particles increased exponentially with increasing temperature. The sand fractions emitted more CO2 (CO2-C per unit fraction-C) than the silt and clay fractions in both forest and grassland soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.  相似文献   

18.
不同的果园管理方式可影响果树根系生长、分布与土壤团聚体稳定性、有机碳固存,进而改变“根-土”复合体响应关系。对西北陇东旱塬不同覆膜年限(2 a、4 a和6 a)苹果园表层土壤(0—20 cm)细根生长进行调查,并采用干筛法和湿筛法相结合的方式对土壤团聚体进行分级(>2 mm, 0.5—2 mm, 0.25—0.5 mm和<0.25 mm)。计算团聚体稳定性参数[> 0.25 mm机械稳定性团聚体含量(DR0.25)、> 0.25 mm水稳性团聚体含量(WR0.25)、平均重量直径(MWD)、平均几何直径(GMD)、团聚体破坏率(PAD)、水稳系数(WSC)]和团聚体有机碳含量。分析细根生长与土壤物理结构对长期覆膜的响应,探明土壤团聚体稳定性与有机碳固持关系,揭示黄绵土物理结构稳定机制。结果表明:6 a处理通过增加表层土壤黏粒和物理性黏粒比例,改变孔隙结构,抑制细根生长,其根量、根长和根表面积仅为对照(CK)的20.97%、24.66%和41.25%;降低表层土壤团聚体力稳性,其DR0.25、机械稳...  相似文献   

19.
The effects on a saline-sodic soil of exopolysaccaride isolated from Nostoc Muscorum or the addition of a cyanobacterial mass proliferation were evaluated in a greenhouse experiment. By day 180 exopolysaccharide increased soluble C by 100%, microbial activity by 366% and the amount of water-stable aggregates larger than 250μm by 12 times. Inoculation with living cyanobacterial mass increased at the end of 365 oxidizable C by 11%, soluble C by 66%, microbial activity by 73% and aggregates larger than 250 μm by66%. A slimy film 3–5 mm thick, with N. Muscorum predominating, covered all the surface of inoculated soils. The higher soil aggregate stability produced by both treatments is a consequence of increased microbial activity and concentrating the soil polysaccharide. The high percentage of clays favours the creation of firm and long-lasting slime-mineral joints. Addition of isolated exopolysaccharide produces a faster and higher increase in soil aggregate stability than cyanobacterial mass inoculation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
温度对不同粘粒含量稻田土壤有机碳矿化的影响   总被引:16,自引:0,他引:16  
模拟了亚热带地区3种不同粘粒含量的水稻土(砂壤土、壤粘土、粉粘土)在5种温度(10、15、20、25和30℃)下的有机碳(SOC)矿化特征,分析SOC矿化对温度变化的响应.结果表明:在160d的培养期内,温度对3种水稻土SOC矿化量的影响有一定差异,30℃时砂壤土、壤粘土和粉粘土SOC矿化量分别是10℃时的3.5、5.2和4.7倍.在较低温度(≤20℃)下,SOC矿化速度较低且相对稳定;在较高温度(≥25℃)下,前期SOC矿化速度较高,随着培养时间的延长逐渐降低,并趋于稳定.3种水稻土SOC矿化的温度系数(Q10)随培养时间出现波动,砂壤土的Q10平均值最低,为1.92,壤粘土和粉粘土的Q10平均值较接近,分别为2.37和2.32;3种土壤矿化速率常数(k)与温度呈极显著的指数相关(P<0.01).3种水稻土有机碳矿化对温度变化的响应敏感度依次为壤粘土>粉粘土>砂壤土.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号