首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
鸟类是具有复杂声行为的动物,其拥有特殊的发声器官--鸣管.尽管鸣禽与非鸣禽的发声特性和发声器官解剖学差异较大,但是两者发声运动控制模式相似.文章综述了近年来鸟类鸣声研究的新进展,重点比较了鸣禽和非鸣禽发声器官的结构功能特点和发声特性调控的异同.作为一种动物模型,鸟类发声系统能为人类语言学习等研究提供借鉴.  相似文献   

2.
对鸟类鸣声的研究是生物声学研究中最为活跃的领域之一,对鸟鸣声的应用在很多方面具有十分广阔的前景。鸟类的鸣声可分为鸣唱和鸣叫,不同鸟类具有不同的鸣叫能力,可据此将鸟类分为鸣禽类和非鸣禽类两大类。文章初步综述了鸟类鸣声的相关知识,对鸣禽和非鸣禽发声器官的结构功能进行了比较。  相似文献   

3.
鸣禽鸣唱控制系统的前端脑通路(anterior forebrain pathway,AFP)在呜唱学习中发挥着重要作用.新纹状体巨细胞核外侧部(lateral magnocellular nucleus of the anterior neostriatum,LMAN)是AFP的最后一级输出核团,AFP中的信号通过LMAN传导到弓状皮质栎核(robust nucleus of the arcopallium,RA),与高级发声中枢(high vocal centre,HVC)共同调节RA的活动,从而影响鸣禽的发声行为.LMAN可能通过其与RA的单突触连接来影响鸣唱可塑性.文章对近年来LMAN在呜唱学习可塑性方面的研究进行综述.  相似文献   

4.
与人类语言学习或形成一样,鸣禽鸣唱也是一种发声学习行为,二者具有一定的相似性,例如发声学习过程均需听觉反馈的参与,幼年期具有更强的发声学习能力,可对复杂的声学结构和音节序列进行控制等。尽管鸣禽和人类的发声器官在结构上有很大差异,但二者发声的物理机制仍表现出很强的相似性。虽然相比于其他哺乳动物,鸣禽和人类的亲缘关系很远,但通过对比发声行为产生的基础通路——脑干先天发声控制通路,以及与发声学习相关的更高神经水平的发声运动和学习通路脑区位置、相互联系、功能及基因表达谱,提示鸣禽鸣唱和人类语言的神经控制具有一定的进化相似性。这些共同特征使得鸣禽成为了研究发声学习的理想模型。本文对鸣禽与人类的发声器官及发声行为的神经控制通路进行了比较,并对鸣禽模型在人类失语症治疗研究中潜在的应用前景进行了展望,以期为研究人类语言学习的神经机制及语言障碍的治疗带来理论参考和借鉴。  相似文献   

5.
鸟类学习记忆研究进展   总被引:2,自引:0,他引:2  
在学习记忆研究中,需根据不同的实验目的选用不同的实验动物和模型。鸟类在生物进化上具有独特的地位,由此决定了其在认知科学研究中的价值。现已建立了呜禽呜唱学习、鸟类空间学习及视觉分辨学习等重要实验模型,并开展了一系列的学习记忆机制研究。文章对近年来鸟类学习记忆研究的进展,从鸟类鸣唱行为、海马功能以及神经递质作用等方面做了回顾。  相似文献   

6.
鸟类鸣叫机理是近年比较活跃的研究领域,已证明可为人类发声机理提供实验模型。本文作者通过自己的研究工作,对鸣禽控制发声的外围和中枢侧向优势作了简要介绍。  相似文献   

7.
左明雪  陈刚  彭卫民  曾少举 《生命科学》2000,12(2):60-62,56
鸣禽发声学习的控制系统主要由一条直接神经通路和一条辅助神经通路组成,由前脑控制发声学习的最高中枢HVC、旁嗅叶的X区和巨细胞核外侧部(lMAN)组成的辅助通路,对鸟类发声学习行为的发育和调制具有重要作用。发声控制系统中神经元类型、数量及再生与更替、神经组构及其重组、神经介质和受体的分布等差异,决定了鸣禽在发声学习行为表现的差异以及性双态性。本文对近年鸟类控制发声学习行煌神经生物学机制的进展作了较为  相似文献   

8.
鸟类鸣声研究   总被引:1,自引:0,他引:1  
介绍了鸟类呜声采集和分析的方法,呜声的多样性及其形成原因以及鸟类鸣声在个体识别、地理变异、系统分类等生态生物学研究中的应用。  相似文献   

9.
鸣禽鸣唱与人类语言相似,是一种复杂的发声学习行为,并受脑中一组相互联系的神经核团调控。该组核团与人类发声控制相关脑区具有一定程度的结构同源性,并可能共享某些发声学习调控机制。因此,鸣禽成为研究发声学习神经机理的重要模式动物,不仅对鸟类语言学习,也可为揭示人类语言学习的神经过程和语言障碍的治疗提供重要参考借鉴。本文基于本课题组长期坚持的研究方向,较系统地概述了国内外鸣禽鸣唱行为研究的历史、重要发现和进展,及其为相关中枢神经系统疾病治疗带来的启示。  相似文献   

10.
鸣禽是除了人类以外极少数具有发声信号学习能力的动物,其已成为研究运动序列控制和学习记忆神经过程的理想模型。鸣禽端脑中的高级发声中枢(high vocal center)、弓状皮质栎核(robust nucleus of the arcopallium)和脑干中的运动核团构成了控制发声的运动通路。该文对鸣禽端脑发声运动通路的电生理学特性及其在发声控制和鸣唱学习中的作用进行了全面的分析综述。  相似文献   

11.
The neuromuscular control of birdsong.   总被引:10,自引:0,他引:10  
Birdsong requires complex learned motor skills involving the coordination of respiratory, vocal organ and craniomandibular muscle groups. Recent studies have added to our understanding of how these vocal subsystems function and interact during song production. The respiratory rhythm determines the temporal pattern of song. Sound is produced during expiration and each syllable is typically followed by a small inspiration, except at the highest syllable repetition rates when a pattern of pulsatile expiration is used. Both expiration and inspiration are active processes. The oscine vocal organ, the syrinx, contains two separate sound sources at the cranial end of each bronchus, each with independent motor control. Dorsal syringeal muscles regulate the timing of phonation by adducting the sound-generating labia into the air stream. Ventral syringeal muscles have an important role in determining the fundamental frequency of the sound. Different species use the two sides of their vocal organ in different ways to achieve the particular acoustic properties of their song. Reversible paralysis of the vocal organ during song learning in young birds reveals that motor practice is particularly important in late plastic song around the time of song crystallization in order for normal adult song to develop. Even in adult crystallized song, expiratory muscles use sensory feedback to make compensatory adjustments to perturbations of respiratory pressure. The stereotyped beak movements that accompany song appear to have a role in suppressing harmonics, particularly at low frequencies.  相似文献   

12.
The diverse vocal performances of oscine songbirds are produced by the independent but coordinated patterns of activity in muscles controlling separate sound generators on the left and right sides of their duplex vocal organ, the syrinx. Species with different song styles use the two sides of their syrinx in different ways to produce their species-typical songs. Understanding how a vocal mimic copies another species' song may provide an insight into whether there are alternative motor mechanisms for generating the model's song and what parts of his song are most difficult to produce. We show here that when a vocal mimic, the northern mockingbird, accurately copies the song of another species it also uses the vocal motor pattern employed by the model species. Deviations from the model's production mechanism result in predictable differences in the mockingbird's song. Species-specific acoustic features of the model seem most difficult to copy, suggesting that they have been exposed to the strongest selective pressure to maximize their performance.  相似文献   

13.
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.  相似文献   

14.
Song learning in birds: the relation between perception and production   总被引:8,自引:0,他引:8  
The vocal control system of oscine songbirds has some perplexing properties--e.g. laterality, adult neurogenesis, neuronal replacement--that are not predicted by common views of how vocal learning takes place. Similarly, we do not understand the relation between the direct pathway for the control of learned song and the recursive pathway necessary for song learning. Some of the paradoxes of the vocal system of birds may disappear once the relation between the perception and production of learned vocalizations is better understood. To some extent, perception and production may be two closely related states of a same system.  相似文献   

15.
Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.  相似文献   

16.
鸣禽发声器官在鸣啭过程中的功能   总被引:1,自引:0,他引:1  
鸣禽的鸣啭是一种习得行为,与人类的学习过程较为相似.因此鸣禽作为一种动物模型在研究人类学习记忆方面得到广泛的应用.鸣管和鸣肌是鸣禽鸣啭的主要器官,对鸣啭过程起着复杂的调节作用.此外,不同的鸣禽在鸣啭时,其发声器官具有不同的侧别优势.对近年在鸣禽发声器官功能方面的研究进行综述.  相似文献   

17.
New data on the cognitive capacities of other primates requires a reevaluation of our position on the nature of human language and the factors that led to its development. Pressures on the limited display system of the social primates may have made changes in the vocal tract anatomy of man associated with the development of upright posture of great selective importance. Human vocal tract anatomy may be at least as important as brain capacity in accounting for the origins of human language. An apparent upper age limit on efficient language acquisition in man leads to the "foreign accent" phenomenon. This may have been adoptively significant as a device which helped in the maintenance of a population structure in which rapid genetic change was possible. Embedding in language may represent a cognitive ability that is also reflected in the capacity for cultural variation, and may be extremely important in maintaining efficient population structure and in selecting for increasing intelligence.  相似文献   

18.
Large animals, having large vocal organs, produce low sound frequencies more efficiently. Accordingly, the frequency of vocalizations is often negatively related to body size across species, and also among individuals of many species, including several non‐oscine birds (non‐songbirds). Little is known about whether song frequency reveals information about body size within oscine species, which are characterized by song learning and large repertoires. We asked whether song frequency is related to body size in two oscines that differ in repertoire size: the dark‐eyed junco (Junco hyemalis) and the serin (Serinus serinus). We also asked whether the extent to which receivers sample repertoires might influence the reliability of their assessment of body size. We found that none of the frequency traits of song that we investigated was related to male body size, nor did more extensive sampling of repertoires lead to any relationship between frequency and body size. Possible reasons for these results are the small range of variation in size within species, or the elaborate vocal physiology of oscines that gives them great control over a wide frequency range. We discuss these results as they relate to female preferences for high‐frequency song that have been previously reported for oscine species.  相似文献   

19.
20.
10种鸣禽控制鸣啭神经核团大小与鸣唱复杂性的相关性   总被引:8,自引:0,他引:8  
为进一步揭示鸣禽鸣唱行为的神经生物学机制 ,本实验先对 8个科 10种鸣禽的鸣唱行为进行了观察和录音 ,并借助声谱软件分析了每种鸣禽的鸣唱复杂性。鸣唱语句复杂性的评价指标包括 :短语总数、每个短语中所含的平均音节数及音节种类数、所有短语的总音节数及音节种类数、最长短语的音节数及音节种类数。然后 ,测定了前脑三个鸣啭学习控制核团和一个与发声无关的视觉参考核团体积 ,分析了鸣唱语句复杂性和这些核团大小间的相关关系。结果表明 :1)HVC和HVC/Rt与 7种鸣唱语句复杂性指标无关 ;RA和RA/Rt与总音节种类数相关 ;AreaX与总音节数及音节种类数相关 ;2 )HVC/RA和HVC/X比值与多个鸣唱语句复杂性指标相关。结果提示 :鸣禽鸣唱复杂性不同特征可能受不同神经控制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号