首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从离体子叶与连体子叶在水中培养一段时间后的比较,看到它们之间在肽链内切酶活性和盐溶蛋白及花生球蛋白降解上的差异并不大,这表明去除胚轴对子叶肽链内切酶活性和贮藏蛋白降解的影响很轻微。亚胺环己酮(蛋白质合成抑制剂)不能完全抑制离体子叶肽链内切酶活性的提高,子叶的大部分大分子贮藏蛋白同样被降解。这表明,在花生种子萌发过程中降解大部分贮藏蛋白的子叶肽链内切酶并非全部是在种子萌发时新合成的,子叶贮藏蛋白降解和肽链内切酶活性基本不受胚轴调控,子叶与胚轴之间在调控关系上可能是一种新的调节类型。  相似文献   

2.
脱落酸(Abscisicacid,ABA)抑制花生种子萌发的作用与核酸和蛋白质合成抑制剂的作用不同.ABA(100μmol/L)在萌发零时施用,明显抑制肽链内切酶活性和同工酶表现以及花生球蛋白降解,萌发48h施用ABA(100μmol/L)只降低肽链内切酶活性.ABA的抑制作用不依赖于核酸和蛋白质合成.核酸合成抑制剂(3'-脱氧腺苷,放线菌素D,5-氟尿嘧啶)和蛋白质合成抑制剂(亚胺环己酮)只能部分降低肽链内切酶活性,对肽链内切酶同工酶表现和花生球蛋白降解无明显影响.实验结果表明花生子叶肽链内酶不是在种子萌发过程中重新(denovo)合成,文中讨论了肽链内切酶活性调节和花生贮藏蛋白降解的起始模式.  相似文献   

3.
花生种子活力与贮藏蛋白质降解的关系   总被引:1,自引:0,他引:1  
花生种子吸胀2d后,子叶中肽链内切酶活性上升,贮藏蛋白质开始降解。高活力种子肽链内切酶活性在吸胀2d后迅速上升,至4d时达到高峰,而中等活力种子的肽链内切酶活性上升速度缓慢。高活力种子萌发时贮藏蛋白质降解速度高于中等活力种子。中等活力种子经PEG和PUT处理可提高种子活力,也促进了种子贮藏蛋白质降解能力的提高。  相似文献   

4.
花生种子吸胀2d后,子叶中肽链内切酶活性上升,贮藏蛋白质开始降解。高活力种子肽链内切酶活性在吸胀2d后迅速上升,至4d时达到高峰,而中等活力种子的肽链内切酶活性上升速度绶慢。高活力种子萌发时贮藏蛋白质降解速度高于中等活力种子。中等活力种子经PEG和PUT处理可提高种子活力,也促进了种子贮藏蛋白质降解能力的提高。  相似文献   

5.
萌发花生种子子叶肽链内切酶的纯化和性质   总被引:1,自引:0,他引:1  
萌发花生种子子叶的肽链内切酶经硫酸铵沉淀,SephadexG-100凝胶层析,DEAE-纤维素23阴离子交换层析和DEAE-SephadexA50层析,得到纯化的酶,该酶有两条同工酶,分子量分别为58和55KD,Km为9.9μmol/L,是半胱氨型肽链内切酶(EC3.4.22),对未萌发花生种子的贮藏蛋白没有明显降解作用.  相似文献   

6.
甲基茉莉酸酯对花生种子萌发和贮藏物质降解的影响   总被引:7,自引:0,他引:7  
甲基茉莉酸酯(Me-Ja)对花生种子萌发基本没有影响,但对下胚轴和根的生长有抑制作用,且与浓度正相关.低浓度Meja促进子叶淀粉酶活性和淀粉降解,高浓度作用相反。Me-Ja部分抑制脂肪降解、贮藏蛋白降解和内肽酶活性,明显抑制脂肪酶活性.文中还讨论了Me-a抑制种子萌发与ABA作用的异同。  相似文献   

7.
花生种子发育和萌发过程中贮藏蛋白的合成和降解   总被引:3,自引:0,他引:3  
以花生品种汕油5 2 3种子为材料,分离纯化花生球蛋白的41 kD和38.5 kD两种主要亚基及伴花生球蛋白的6 0.5 KD亚基并制备抗体.We stern blot分析表明,3种亚基在花生胚组织分化期的胚轴和子叶中就开始合成,其中60.5 kD亚基是最先在胚轴和子叶中大量合成和积累的贮藏蛋白,41 kD和38.5 kD亚基在随后的发育中积累量不断增加;种子萌发时这3种亚基的降解进程不一样,胚轴和子叶中41 kD和38.5kD亚基的降解均先于60.5 kD亚基.  相似文献   

8.
花生种子发育过程中活力的形成在时间上是不均衡的,果针入土后40d内活力水平很低,40d之后活力水平才急剧上升,这和贮藏蛋白迅速合成的时期吻合.随着贮藏蛋白质的合成和累积,由发育转向萌发时其被降解的速度加快,花生球蛋白被优先降解.和贮藏蛋白质其它组分相比较,花生球蛋白和种子活力有更密切的关系.  相似文献   

9.
陈建敏  孙德兰 《植物学报》2005,22(5):541-548
莲子叶细胞中储存了丰富的营养物质, 主要为蛋白质、淀粉和淀粉质体DNA。这些贮藏物质为种子萌发和幼苗的生长提供必需的能量和养料。通过组织化学和显微镜观察, 研究莲从种子萌发到植株生长至具有4个节时, 子叶中贮藏物质消耗的全过程。在此过程中, 子叶中的贮藏物质不断降解,营养物质发生转运。蛋白体首先发生降解, 其大量降解主要发生在幼苗三叶期。淀粉质体降解时会聚 集成团, 之后体积逐渐减小, 最后完全降解。种子萌发后65天是子叶贮藏物质消耗末期, 淀粉质体DNA的含量比萌发后20天的三叶期明显减少。细胞壁的形态结构发生多种形式的变化, 细胞壁发生的这些变化与子叶细胞间物质的运输有关。含多糖的球形颗粒通过维管束在子叶中运输。  相似文献   

10.
莲种子萌发和幼苗生长时期营养物质的代谢变化   总被引:2,自引:1,他引:1  
莲子叶细胞中储存了丰富的营养物质,主要为蛋白质、淀粉和淀粉质体DNA.这些贮藏物质为种子萌发和幼苗的生长提供必需的能量和养料.通过组织化学和显微镜观察,研究莲从种子萌发到植株生长至具有4个节时,子叶中贮藏物质消耗的全过程.在此过程中,子叶中的贮藏物质不断降解,营养物质发生转运.蛋白体首先发生降解,其大量降解主要发生在幼苗三叶期.淀粉质体降解时会聚集成团,之后体积逐渐减小,最后完全降解.种子萌发后65天是子叶贮藏物质消耗末期,淀粉质体DNA的含量比萌发后20天的三叶期明显减少.细胞壁的形态结构发生多种形式的变化,细胞壁发生的这些变化与子叶细胞间物质的运输有关.含多糖的球形颗粒通过维管束在子叶中运输.  相似文献   

11.
萌发中花生胚轴的耐干性与热稳定蛋白   总被引:6,自引:0,他引:6  
成熟花生种子吸胀18 h 发芽率达100 % 。在这18 h 的范围内,胚轴即使经干燥处理,萌发生长率仍保持100 % ,而热稳定蛋白含量变化很小。吸胀24 h 后,经干燥的花生胚完全丧失萌发生长能力。SDSPAGE和双向电泳表明,花生胚轴的热稳定蛋白主要是贮藏蛋白,该蛋白中的花生球蛋白大亚基,伴花生球蛋白I和2S 蛋白的降解与胚轴的耐干性丧失有关。  相似文献   

12.
花生(Arachis hypogaea L.)汕油71果针入土20d(20 DAP)的种子剥去种皮后,10%的胚可以萌发,至40 DAP发芽率达98%。不同发育时期的花生胚萌发 10d后子叶盐溶蛋白质和花生球蛋白降解表明,20和32 DAP胚萌发后,子叶中这些蛋白质只有部分降解。随着胚成熟度增加,子叶中降解这些蛋白质的能力不断提高。20~40 DAP胚萌发4d时,子叶的BAPAase和GHE活性较低。50~80DAP胚萌发 4d,子叶中上述两种酶均显示较高的活性。  相似文献   

13.
不同活力花生种子子叶内肽酶活性及花生球蛋白的降解   总被引:4,自引:0,他引:4  
花生种子人工劣变后活力下降,子叶内肽酶活性降低,花生球蛋白降解速率减慢。内肽酶同工酶也发生变化,种子在劣变过程中可能诱导新内肽酶产生。  相似文献   

14.
萌发中花生胚轴的耐干性与热稳定蛋的   总被引:4,自引:0,他引:4  
成熟花生种子吸胀18h发芽率达100%,在这18h的范围内,胚轴即使经干燥处理,萌发生长率仍保持100%,而热稳定蛋白含量变化很小。吸胀24h后,经干燥的花生胚完全丧失蓝发生长能力。SDS-PAGE和和双向电泳表明,花生胚轴的热稳定蛋白主要是贮藏蛋白,该蛋白中的花生球蛋白大亚基,伴花生球蛋白I和25蛋白的降解与胚轴的耐干性丧失有关。  相似文献   

15.
离体发育和萌发中花生种子不同部份内源ABA含量的变化   总被引:2,自引:0,他引:2  
离体发育和萌发中花生种子不同部份的内源ABA含量变化存在明显的差异.种皮和子叶内存在ABA的C(40)生物合成途径,胚轴内恻为C(15)生物合成途径.种子内源ABA含量变化和种子活力有密切关系.  相似文献   

16.
黄瓜子叶离体后的一些生理变化   总被引:1,自引:0,他引:1  
成熟种子的子叶离体后,在无外源激素和营养供应的滤纸保湿(26±1℃,2.92Wm-2,14h光照)条件下培养。0—4d内子叶的面积大小和鲜重迅速增加而干重基本保持不变,4d后子叶面积和鲜重继续增加但速度减慢,干重迅速下降;呼吸速率和叶绿素含量4d前稳定上升,第4天达到峰值后下降.离休后6d内,子叶中矿质元素含量发生了一定的变化;除Put含量在第2天有所下降外,子叶中Spm、SPd和Cad含量均不断上升,但上升幅度不相同,因此,离体并没有削弱黄瓜子叶多胺合成;GA3和ABA含量有不同程度的上升,但IAA和ZT含量剧增,表明离休子叶有很好的激素合成能力.离体后2d内,子叶中DNA含量、RNA含量、酸溶蛋白含量均成倍增加,此后DNA含量迅速下降,酸溶蛋白含量呈彼动状,RNA含量基本保持同样水平;0—4d碱溶蛋白含量不断减少,这表明子叶离体0—4d有活跃的核酸、蛋白质代谢活动.  相似文献   

17.
花生种子劣变过程中一些酶活性的变化   总被引:3,自引:0,他引:3  
应用20%聚乙二醇处理花生种子8小时,种子活力提高。表现在过氧化氢酶活性较高,过氧化物含量较低,外渗液电导率下降。萌发3天幼苗的超氧物歧化酶和过氧化氢酶活性均高于对照。萌发3天种子的活力指数和21天幼苗生长量均有明显提高。由萌发3天种子子叶分离出线粒体,在悬浮液中的酸性磷酸酯酶活性和 DNA 酶活性均明显降低。  相似文献   

18.
芡实种子萌发期,子叶吸收外胚乳中养分供萌发和幼苗发育,具有吸器的功能。在种子萌发过程中,子叶的部分表皮细胞发育为传递细胞。其壁内突的生长以外切向壁为多,形成壁内突的造壁物质主要由高尔基体合成,并由其溢出的囊泡运送的。  相似文献   

19.
花生(Arachis hypogaea L.)种子发育过程中,胚轴内源ABA 含量一直是增加的;种皮内源ABA含量在果针入土后40 d 最大,然后急剧下降;子叶内源ABA 含量在果针入土后60 d 出现高峰,然后有轻微下降。种子活力指数和萌发时内源ABA 的净下降量有密切关系。甘露醇可促进离体胚内源ABA 合成,1-甲基-3-苯基-5(3-[三氟甲基]-苯基-4-(1氢)-吡啶)抑制子叶内源ABA 的合成,子叶和胚轴存在不同的ABA 合成途径。种子早熟和早萌处理时,内源ABA 含量都下降,胚轴在种子由发育向萌发转换中起着十分重要的作用  相似文献   

20.
采用泉花10号,汕油71的春秋花生种子为材料,利用细胞化学方法,在环氧树脂厚切片中分别显示出下胚轴和子叶中的多糖、蛋白质和脂类,并对其数量、形态及分布进行比较.结果表明,春花生种子下胚轴细胞较大,且内部结构清晰,排列规则,发育充分,而秋花生种子成熟度较低.对于子叶细胞,在春花生中,其贮藏物质丰富含大量的脂体、蛋白体,排列紧密;而秋花生细胞内部结构疏松,液泡中尚未充满蛋白质,但淀粉粒似较多.这就从细胞学的角度解释了生产上采用春花生种子的优越性..另外,在方法上对环氧树脂厚切片中多糖、蛋白质、脂类的细胞化学染色方法和染色保存进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号