首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The nucleotide sequence of part of the late region of the polyoma virus genome was determined. It contains coding information for the major capsid protein VP1 and the C-terminal region of the minor proteins VP2 and VP3. In the sequence with the same polarity as late mRNA's, all coding frames are blocked by termination codons in a region around 48 units on the physical map. This is the region where the N-terminus of VP1 and the C-termini of VP2 and VP3 have been located (T. Hunter and W. Gibson, J. Virol. 28:240-253, 1978; S. G. Siddell and A. E. Smith, J. Virol. 27:427-431, 1978; Smith et al., Cell 9:481-487, 1976). There are two long uninterrupted coding frames in the late region of polyoma virus DNA. One lies at the 5' end of the sequence and contains potential coding sequences for VP2 and VP3. The other contains 383 consecutive sense codons starting with the ATG at nucleotide position 1,218, extends from 47.5 to 25.8 units counterclockwise on the physical map, and is located where the VP1 gene has been mapped. The VP1 gene overlaps the genes for proteins VP2/VP3 by 32 nucleotides and uses a different coding frame. From the DNA sequence, the amino acid sequence of VP1 was predicted. The proposed VP1 sequence is in good agreement with other data, namely, with the partial N-terminal amino acid sequence and the total amino acid composition. The VP1 coding frame terminates with a TAA codon at 25.8 map units. This is followed by an AATAAA sequence, which may act as a processing signal for the viral late mRNA's. When both nucleotide and amino acid sequences are compared with their counterparts in the related simian virus 40, extensive homologies are found over the entire region of the two viral genomes. Maximum homology appears to occur in those regions which code for the C-termini of the VP1 proteins. The overlap region of VP1 with VP2/VP3 of polyoma virus is shorter by 90 nucleotides than is that of simian virus 40 and shows very limited homology with the simian virus 40 sequence. This leads to the suggestion that the overlap segments of both viruses have been freed from stringency imposed on drifting during evolution and that proteins VP2 and VP3 of polyoma virus may have been truncated by the appearance of a termination codon within the sequence.  相似文献   

2.
A mutation in polyoma virus strain 3049 which results in the overproduction of capsid proteins has been mapped to the late region of the genome between the HindIII site at 45.0 map units and the BamHI site at 58.6 map units. This region contains the coding sequence for VP3 and a portion of VP2, but does not include the late promoters or the coding sequence for the late leaders. The possible role of VP2 or VP3 in the regulation of genetic expression in polyoma virus is discussed.  相似文献   

3.
P Deininger  A Esty  P LaPorte  T Friedmann 《Cell》1979,18(3):771-779
The nucleotide sequence of the late region of the polyoma genome has been determined. It consists of 2366 bp and encodes the virion capsid proteins VP1, VP2 and VP3. Extensive open reading frames identify the possible coding sequences of VP2 and VP3 toward the 5′ end of the late region, and of the major capsid protein VP1 toward the 3′ end of the late region. The 5′ end of the sequence encoding VP1 overlaps the 3′ VP2/VP3 region by 29 nucleotides and is in a different reading frame. The predicted amino acid sequences for all three known capsid proteins show extensive homology with the analogous capsid proteins of SV40 throughout most of their length. The VP2/VP3 amino acid homology between the two viruses is 34%, while the major capsid protein VP1 is much more highly conserved, showing 54% homology. These homologies together with the extent of open reading frames help to define the extent of the coding sequences. The VP2 initiator begins at position 269 and the coding region extends to the first termination codon beginning at 1226. The predicted size of VP2 is 35,007 daltons. A probable VP3 initiator is within the VP2 coding sequence at position 614 and is in the same frame as VP2. This coding sequence can also utilize the terminator at position 1226, and the predicted size of the VP3 translation product is 22,979 daltons. The VP1 coding region begins at position 1197 and continues in a frame different from that of VP2/ VP3 to a termination point at 2349. The molecular weight of VP1 is predicted to be 42,834 daltons. The 5′ untranslated region contains sequences that resemble a potential ribosomal binding site and a possible mRNA capping sequence similar to those found in other eucaryotic systems. There is also a sequence (5′-TCAAGTAAGTGA-3′) almost identical to one found in two regions containing potential splice sites in the early region of polyoma. The 5′ untranslated region does not show the extensive repeated sequences found in the similar region of SV40. The 3′ untranslated region contains the sequence 5′-AATAAA-3′, thought to represent a polyadenylation signal. As in the early region of polyoma, the extensive nucleotide and deduced amino acid homology with SV40 indicate a close evolutionary relationship between the two viruses, and help to identify regions of common and important structure-function relationships.  相似文献   

4.
The nucleotide sequence of the late region of the polyoma virus genome has been deduced, which codes for the major capsid protein VP1 and the C-terminal region of the minor proteins VP2 and VP3. The amino acid sequence of VP1 predicted from the nucleotide sequence is in good agreement with the partial N-terminal sequence 1 and amino acid composition of VP1 2,3. When both nucleotide and amono acid sequences are compared with their counterparts in the related viruses, SV40 4,5 and BKV (R. Young, personal communication), extensive homologies are found along the entire regions of the viral genes. Maximum homologies appear to occur in the regions which code for the C-terminal of VP1, on the contrary of the result of heteroduplex analysis 6 with 6 with SV40 and polyoma virus DNAs.  相似文献   

5.
The three polyoma virus capsid proteins VP1, VP2, and VP3 were synthesized in vitro in the presence of several radiolabeled amino acids and, after purification on sodium dodecyl sulfate-polyacrylamide gels, were subjected to sequential Edman degradation. The partial amino-terminal amino acid sequences obtained were compared with the sequence of amino acids predicted from the polyoma virus DNA sequencing (Arrand et al., J. Virol. 33:606--618, 1980). Together, these results showed that the 5' ends of the VP1, VP2, and VP3 coding sequences are located 1,217, 289, and 634 nucleotides, respectively, from the junction of HpaII restriction fragments 3 and 5.  相似文献   

6.
Polyadenylated cytoplasmic RNA from polyoma virus-infected cells can be translated in the wheat germ system to yield all there polyoma virus capsid proteins, VP1, VP2, and VP3. The translation products of RNA selected from total cytoplasmic RNA of infected cells by hybridization to polyoma virus DNA showed a high degree of enrichment for VP1, VP2, and VP3. The identity of the in vitro products with authentic virion proteins was established in two ways. First, tryptic peptide maps of the in vitro products were found to be essentially identical to those of their in vivo counterparts. Second, the mobilities of the in vitro products on two-dimensional gels were the same as those of viral proteins labeled in vivo. VP1, VP2, and vp3 were all labeled with [35S] formylmethionine when they were synthesized in the presence of [35S] formylmethionyl-tRNAfmet. We determined the sizes of the polyadenylated mRNA's for VP1, VP2, and VP3 by fractionation on gels. The sizes of the major mRNA species for the capsid proteins are as follows: VP2, 8.5 X 10(5) daltons; VP3, 7.4 X 10(5) daltons; and VP1, 4.6 X 10(5) daltons. We conclude that all three viral capsid proteins are synthesized independently in vitro, that all three viral capsid proteins are virally coded, and that each of the capsid proteins has a discrete mRNA.  相似文献   

7.
A E Smith  R Kamen  W F Mangel  H Shure  T Wheeler 《Cell》1976,9(3):481-487
The 19S and 16S polyoma virus late mRNAs have been separated on sucrose-formamide density gradients and translated in vitro. The 16S RNA codes only for polyoma capsid protein VP1, while the 19S RNA codes in addition for capsid protein VP2. Since the 19S and 16S species have been previously mapped on the viral genome, these results allow us to deduce the location of the sequences coding for VP1 and VP2. Comparison of the chain lengths of the capsid proteins with the size of the viral mRNAs coding for them suggests that VP1 and VP2 are entirely virus-coded. Purified polyoma 19S RNA directs the synthesis of very little VP1 in vitro, although it contains all the sequences required to code for the protein. The initiation site for VP1 synthesis which is located at an internal position on the messenger is probably inactive either because it is inaccessible or because it lacks an adjacent "capped" 5' terminus. Similar inactive internal initiation sites have been reported for other eucarotic viral mRNAs (for example, Semliki forest virus, Brome mosaic virus, and tobacco mosaic virus), suggesting that while eucaryotic mRNAs may have more than one initiation site for protein synthesis, only those sites nearer the 5' terminus of the mRNA are active.  相似文献   

8.
Polyadenylated RNA isolated from the cytoplasm of mouse 3T6 cells 28 h after infection with polyoma virus has been isolated and translated in vitro. Polyoma capsid proteins VP1 and VP2 have been identified in the cell-free product by polyacrylamide gel electrophoresis, specific immunoprecipitation, and tryptic peptide fingerprinting. Polyoma mRNA species have been isolated by preparative hybridization to purified viral DNA immobilized on cellulose nitrate filters and shown to code for both VP1 and VP2. These experiments establish conditions for the isolation of late polyoma mRNA and the cell-free synthesis of polyoma capsid proteins and indicate that the active mRNA species are at least partially virus coded.  相似文献   

9.
The three cytoplasmic polyadenylated mRNA's which separately encode the three capsid proteins (VP1, VP2, and VP3) of polyoma virus were mapped on the viral genome by one- and two-dimensional gel electrophoreses of nuclease S1-resistant RNA-DNA hybrids. The mRNA's, which we designated mVP1, mVP2, and mVP3 to indicate the coding functions deduced from the cosedimentation of the RNAs and the messenger activities, comprise an overlapping set of 3'-coterminal molecules which also share a heterogeneous family of noncoding 5'-terminal regions (Flavell et al., Cell 16:357--371, 1979; Legon et al., Cell 16:373--388, 1979). The three species differ in the length of the 3' colinear coding region which is spliced to the 5' leader sequences. The common polyadenylated 3' end maps at map unit 25.3. The 5' ends of the colinear bodies of mVP1, mVP3, and mVP2 map at 48.5, 59.5, and 66.5 map units, respectively. An examination of the polyoma virus DNA sequence (Arrand et al., J. Virol. 33:606--618, 1980) in the vicinities of splicing sites approximated by the S1 gel mapping data for sequences common to the ends of known intervening sequences allowed prediction of the precise splice points in polyoma virus late mRNA's. In all three cases, the leader sequences are joined to the mRNA bodies at least 48 nucleotides before the translational initiation codon used in each particular messenger. The start signal which functions in each mRNA is the first AUG (or GUG) triplet after the splice junction.  相似文献   

10.
Polyoma virus has three late mRNA's: one for each virion protein.   总被引:18,自引:13,他引:5       下载免费PDF全文
Polyoma virus mRNA, isolated from the cytoplasm of 3T6 cells late after infection and purified by hybridization to HpaII fragment 3 of polyoma virus DNA, was separated on 50% formamide-containing sucrose density gradients, and the fractionated RNA was recovered and translated in vitro. Analysis of the cell-free products showed that the minor virion protein VP3 was synthesized from an mRNA sedimenting at approximately 18S betweeen the 19S VP2 mRN and the 16S VP1 mRNA. Other experiments showed that the VP2 and VP3 can be labeled with formyl methionine from initiator tRNA. We conclude that there are three late polyoma virus mRNA's, each directing the synthesis of only one viral capsid protein.  相似文献   

11.
Polyoma virus complementary RNA, synthesized in vitro by using highly purified Escherichia coli RNA polymerase and nondefective form I polyoma DNA, was translated in a wheat germ cell-free system. Polypeptides were synthesized that comigrated on sodium dodecyl sulfate-polyacrylamide gels with the polyoma capsid proteins VP1 and VP2, although most of the cell-free products were of smaller molecular weights. The VP1-size protein specifically immunoprecipitated with anti-polyoma virus serum, and upon digestion by trypsin yielded [35S]methionine-labeled tryptic peptides that co-chromatographed with the [3H]methionine-labeled tryptic peptides of virion-derived VP1 on both cation-exchange and anion-exchange resins. The VP2-size in vitro product contained all the virion VP2 methionine-labeled tryptic peptides, as shown by cation- and anion-exchange chromatography and two-dimensional fingerprinting on cellulose. We conclude that full-length polyoma VP1 and VP2 are synthesized in response to complementary RNA and consequently that the viral capsid proteins VP1, VP2, and VP3 are entirely virus coded.  相似文献   

12.
Human polyomavirus JC virus genome.   总被引:53,自引:23,他引:30       下载免费PDF全文
The complete DNA sequence of the human JC virus, which was found to consist of 5,130 nucleotide pairs, is presented. The amino acid sequence of six proteins could be deduced: the early, nonstructural proteins, large T and small t antigens; the late capsid proteins, VP1, VP2, and VP3; and the agnogene product encoded within the late leader sequence, called the agnoprotein in simian virus 40. The extent of homology between JC virus DNA and the genomes of simian virus 40 (69%) and BK virus (75%) confirmed the close evolutionary relationship of these three polyomaviruses. The sequences showing the greatest divergence in these viral DNAs occurred within the tandem repeats located to the late side of the replication origins.  相似文献   

13.
We have determined the nucleotide sequence of the DNA of simian virus 40. The proceeding report (Dhar, R., Reddy, V.B., and Weissman, S.M. (1978) J. Biol. Chem. 253, 612-620) presents the sequence of a portion of the simian virus 40 DNA that overlaps the region encoding the 5' end of the minor structural protein VP2. We report here the sequence of the remainder of the genes for minor structural proteins VP2 and VP3. The results indicate that the mRNA for the two proteins is read in the same phase and the initiation site for VP3 lies within the structural gene of VP2. The codons of the COOH-terminal amino acids of VP2 and VP3 are read in a second phase as the codons of the NH2-terminal amino acids of VP1.  相似文献   

14.
The complete DNA sequence of the human polyomavirus AS virus (ASV) is presented. Although ASV can be differentiated antigenically from the other human polyomaviruses (BK and JC viruses), it shares 94.9% homology at the nucleotide level with the Dunlop strain of BK virus. Differences found in ASV relative to BK virus include the absence of tandem repeats in its regulatory region, the deletion of 32 nucleotides in the late mRNA leader region (altering the initiation codon for the agnoprotein), the presence of a cluster of base pair substitutions within the coding region of the major capsid protein, VP1, and the absence of 4 amino acids in the carboxy-terminal region of the early protein, T antigen. The 43 nucleotides deleted in the Dunlop strain of BK virus relative to the Gardner prototype strain of BK virus are present in ASV. Possible reasons for the distinct antigenicity of the ASV capsid, given the high degree of nucleotide homology with BK virus, are discussed. To reflect the high degree of sequence homology between ASV and BK virus, we suggest ASV be renamed BKV(AS).  相似文献   

15.
16.
The nucleotide sequence of the region of human polyoma virus JC DNA between 0.5 and 0.7 map units from a unique EcoRI cleavage site was determined and compared with those of the corresponding regions of another human polyoma virus, BK, and simian virus 40 DNAs. Within this region consisting of 945 base pairs, we located the origin of DNA replication near 0.7 map units, the entire coding region for small T antigen, and the splice junctions for large-T-antigen mRNA. The deduced amino acid sequences for small T antigen and the part of large T antigen markedly resembled those of polyoma virus BK and simian virus 40. The results strongly suggest that polyoma virus JC has the same organization of early genome as polyoma virus BK and simian virus 40 on the physical map, with the EcoRI site as a reference point.  相似文献   

17.
Human polyomavirus JC (JCV) can encode the three capsid proteins VP1, VP2, and VP3, downstream of the agnoprotein in the late region. JCV virions are identified in the nucleus of infected cells. In this study, we have elucidated unique features of JCV capsid formation by using a eukaryotic expression system. Structures of JCV polycistronic late RNAs (M1 to M4 and possibly M5 and M6) generated by alternative splicing were determined. VP1 would be synthesized from M2 RNA, and VP2 and VP3 would be synthesized from M1 RNA. The presence of the open reading frame of the agnoprotein or the leader sequence (nucleotides 275 to 409) can decrease the expression level of VP1. VP1 was efficiently transported to the nucleus in the presence of VP2 and VP3 but distributed both in the cytoplasm and in the nucleus in their absence. Mutation analysis indicated that inefficiency in nuclear transport of VP1 is due to the unique structure in the N-terminal sequence, KRKGERK. Within the nucleus, VP1 was localized discretely and identified as speckles in the presence of VP2 and VP3 but distributed diffusely in their absence. These results suggest that VP1 was efficiently transported to the nucleus and localized in the discrete subnuclear regions, possibly with VP2 and VP3. By electron microscopy, recombinant virus particles were identified in the nucleus, and their intranuclear distribution was consistent with distribution of speckles. This system provides a useful model with which to understand JCV capsid formation and the structures and functions of the JCV capsid proteins.  相似文献   

18.
In this study, we identified a region in the human parvovirus structural protein which involves the neutralization of the virus by a monoclonal antibody and site-specific synthetic peptides. A newly established monoclonal antibody reacted with both viral capsid proteins VP1 and VP2. The epitope was found in six strains of independently isolated human parvovirus B19. The monoclonal antibody could protect colony-forming unit erythroid in human bone marrow cell culture from injury by the virus. The monoclonal antibody reacted with only 1 of 12 peptides that were synthesized according to a predicted amino acid sequence based on nucleotide sequences of the coding region for the structural protein of B19 virus. The sequence recognized by the antibody was a site corresponding to amino acids 328 to 344 from the amino-terminal portion of VP2. This evidence suggests that the epitope of the viral capsid protein is located on the surface of the virus and may be recognized by virus-neutralizing antibodies.  相似文献   

19.
E Soeda  J R Arrand  N Smolar  B E Griffin 《Cell》1979,17(2):357-370
The sequence of about one third of the polyoma virus genome is presented. This sequence covers the origin of replication of two large plaque strains (A2 and A3) of polyoma virus. The two strains differ by 11 bp in the origin region. A model for replication is suggested. The sequence probably also covers the entire coding region of two of the polyoma virus early proteins--small and middle T antigens--as well as part of the coding region for large T antigen. Over a small region of the DNA, all three coding frames contain termination codons, which argues a need for spliced early messenger RNAs. In another region of the DNA, two coding frames can be used. Correlation with protein data suggests that one frame codes for part of middle T antigen and the other for part of large T antigen.  相似文献   

20.
Two plaque morphology variants of polyoma virus (A-2 and 208) showed marked differences in agarose gel electrophoresis of the whole particles, isoelectric focusing of the major capsid protein VP1 (45,000 daltons) and three tryptic peptides (A, B and C) of VP1. No major difference in apparent molecular weight on NaDodSO4 gels, amino acid composition or carbohydrate detectable by Schiff staining was revealed between the capsid proteins of the two viruses.Correlations have been made between phenotype, portions of the primary amino acid sequence of VP1 and the physical map of polyoma virus DNA by analysis of this protein from large plaque A-2 virus, minute plaque 208 virus and large plaque 208 virus selected after marker rescue with a fragment of polyoma virus DNA generated by the Hpa II restriction enzyme. The interrelationship of these properties was established by taking advantage of the observations of Miller, Cooke and Fried (1976)that heterozygous markers present on heteroduplex DNA are found in 100% of selected progeny and in only 50% of unselected progeny.All five marker rescued isolates selected for large plaque morphology showed only two A-2-specific characters, the absence of peptide C in tryptic maps of VP1 and the aggregation of VP1 on isoelectric focusing. The other four characters which distinguish A-2 and 208 were present or absent in 40–60% of the five isolates, which is close to the expected 50% for unselected markers. Three of the four A-2-specific characters (the presence of peptide A, absence of peptide B and isoelectric point of VP1) have been found to occur coordinately in the marker rescued isolates. The fourth character (electrophoretic mobility of virus particles in agarose gels) segregated independently.The techniques used in this study should find wide application in correlating primary amino acid sequence, nucleotide sequence and phenotype in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号