首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
The human polyomavirus JC (JCV) replicates in the nuclei of infected cells. Here we report that JCV virions are efficiently assembled at nuclear domain 10 (ND10), which is also known as promyelocytic leukemia (PML) nuclear bodies. The major capsid protein VP1, the minor capsid proteins VP2 and VP3, and a regulatory protein called agnoprotein were coexpressed from a polycistronic expression vector in COS-7 cells. We found that VP1 accumulated to distinct subnuclear domains in the presence of VP2/VP3 and agnoprotein, while VP1 expressed alone was distributed both in the cytoplasm and in the nucleus. Mutation analysis revealed that discrete intranuclear accumulation of VP1 requires the presence of either VP2 or VP3. However, VP2 or VP3 expressed in the absence of VP1 showed diffuse, not discrete, nuclear localization. The C-terminal sequence of VP2/VP3 contains two basic regions, GPNKKKRRK (cluster 1) and KRRSRSSRS (cluster 2). The deletion of cluster 2 abolished the accumulation of VP1 to distinct subnuclear domains. Deletion of the C-terminal 34 residues of VP2/VP3, including both cluster 1 and cluster 2, caused VP1 to localize both in the cytoplasm and in the nucleus. Using immunoelectron microscopy of cells that coexpressed VP1, VP2/VP3, and agnoprotein, we detected the assembly of virus-like particles in discrete locations along the inner nuclear periphery. Both in oligodendrocytes of the human brain and in transfected cells, discrete nuclear domains for VP1 accumulation were identified as ND10, which contains the PML protein. These results indicate that major and minor capsid proteins cooperatively accumulate in ND10, where they are efficiently assembled into virions.  相似文献   

2.
The agnoprotein of simian virus 40 (SV40) is a 61-amino-acid protein encoded in the leader of some late mRNAs. In indirect immunofluorescence studies with antisera against SV40 capsid proteins, we show that mutants which make no agnoprotein display abnormal perinuclear-nuclear localization of VP1, the major capsid protein, but not VP2 or VP3, the minor capsid proteins. In wild-type (WT) SV40-infected CV-1P cells, VP1 was found predominantly in the cytoplasm until 36 h postinfection (p.i.), approximately the time that high levels of agnoprotein became detectable under our infection conditions. Thereafter, VP1 localized rapidly to the perinuclear region and to the nucleus. In contrast, in agnoprotein-minus mutant-infected CV-1P cells, perinuclear-nuclear accumulation of VP1 occurred much less efficiently; a significantly greater fraction of cells with predominantly cytoplasmic fluorescence was observed up to 48 h p.i. At 48 and 60 h p.i., more cells with largely perinuclear and little nuclear staining were seen than in WT-infected controls. In similar analyses with stably transfected cell lines constitutively expressing the agnoprotein, VP1 localized to the nucleus before 30 h p.i., regardless of the infecting virus. Delayed nuclear entry of VP1 in a mutant which makes no agnoprotein was also overcome in a revertant which has a second site point mutation in VP1. This suggests that an alteration of VP1 can partially overcome the defect of the agnogene mutation by enhancement of the rate of its own nuclear localization. Taken together, these results indicate that at least one function of the agnoprotein is to enhance the efficiency of perinuclear-nuclear localization of VP1.  相似文献   

3.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. JCV encodes early proteins (large T antigen, small T antigen, and T' antigen) and four late proteins (agnoprotein, and three viral capsid proteins, VP1, VP2, and VP3). In the current study, a novel function for JCV agnoprotein in the morphogenesis of JC virion particles was identified. It was found that mature virions of agnoprotein-negative JCV are irregularly shaped. Sucrose gradient sedimentation and cesium chloride gradient ultracentrifugation analyses revealed that the particles of virus lacking agnoprotein assemble into irregularly sized virions, and that agnoprotein alters the efficiency of formation of VP1 virus-like particles. An in vitro binding assay and immunocytochemistry revealed that agnoprotein binds to glutathione S-transferase fusion proteins of VP1 and that some fractions of agnoprotein colocalize with VP1 in the nucleus. In addition, gel filtration analysis of formation of VP1-pentamers revealed that agnoprotein enhances formation of these pentamers by interacting with VP1. The present findings suggest that JCV agnoprotein plays a role, similar to that of SV40 agnoprotein, in facilitating virion assembly.  相似文献   

4.
5.
Shishido-Hara Y 《Uirusu》2006,56(1):17-25
Human polyomavirus JC (JCV) is a causative agent for progressive multifocal leukoencephalopathy, a fatal demyelinating disorder. The viruses form intranuclear viral inclusions in infected oligodendrocytes. The outer capsid of JCV is thought to be composed of 360 molecules of major capsid protein VP1, and minor capsid proteins VP2 and VP3 in an appropriate ratio. However, the regulatory mechanisms of gene expression for the capsid proteins, their nuclear transport, and formation of viral inclusions are not well understood. We have recently clarified the following regarding the mechanism underlying JCV virion assembly; (i) major and minor capsid proteins are synthesized from messenger RNAs, the expression ratio of which is determined by alternative splicing, (ii) messenger RNAs for the major and minor capsid proteins are polycistronic, and their translation occurs downstream of the regulatory protein, agnoprotein, (iii) major and minor capsid proteins are translocated to the nucleus in a cooperative manner and accumulate at the dot-shaped intranuclear structures called promyelocytic leukemia nuclear bodies (PML-NBs), (iv) efficient viral replication can occur at the PML-NBs, where capsid assembly is likely to be associated with viral DNA replication. PML-NBs are the sites for expression of important nuclear functions for the host cells. The finding that the target of JCV infection is the PML-NB may contribute greatly to our understanding of the mechanism underlying cellular degeneration, which occurs after the formation of intranuclear viral inclusions.  相似文献   

6.
Polyadenylated cytoplasmic RNA from polyoma virus-infected cells can be translated in the wheat germ system to yield all there polyoma virus capsid proteins, VP1, VP2, and VP3. The translation products of RNA selected from total cytoplasmic RNA of infected cells by hybridization to polyoma virus DNA showed a high degree of enrichment for VP1, VP2, and VP3. The identity of the in vitro products with authentic virion proteins was established in two ways. First, tryptic peptide maps of the in vitro products were found to be essentially identical to those of their in vivo counterparts. Second, the mobilities of the in vitro products on two-dimensional gels were the same as those of viral proteins labeled in vivo. VP1, VP2, and vp3 were all labeled with [35S] formylmethionine when they were synthesized in the presence of [35S] formylmethionyl-tRNAfmet. We determined the sizes of the polyadenylated mRNA's for VP1, VP2, and VP3 by fractionation on gels. The sizes of the major mRNA species for the capsid proteins are as follows: VP2, 8.5 X 10(5) daltons; VP3, 7.4 X 10(5) daltons; and VP1, 4.6 X 10(5) daltons. We conclude that all three viral capsid proteins are synthesized independently in vitro, that all three viral capsid proteins are virally coded, and that each of the capsid proteins has a discrete mRNA.  相似文献   

7.
The polyomavirus minor late capsid antigen, VP2, is myristylated on its N-terminal glycine, this modification being required for efficient infection of mouse cells. To study further the functions of this antigen, as well as those of the other minor late antigen, VP3, recombinant baculoviruses carrying genes for VP1, VP2, and VP3 have been constructed and the corresponding proteins have been synthesized in insect cells. A monoclonal antibody recognizing VP1, alpha-PyVP1-A, and two monoclonal antibodies against the common region of VP2 and VP3, alpha-PyVP2/3-A and alpha-PyVP2/3-B, have been generated. Reactions of antibodies with antigens were characterized by indirect immunofluorescence, immunoprecipitation, and immunoblot analysis. Immunofluorescent staining of mouse cells infected with polyomavirus showed all antigens to be localized in nuclei. When the late polyomavirus proteins were expressed separately in insect cells, however, only VP1 was efficiently transported into the nucleus; VP2 was localized discretely around the outside of the nucleus, and VP3 exhibited a diffused staining pattern in the cytoplasm. Coexpression of VP2, or VP3, with VP1 restored nuclear localization. Immunoprecipitation of infected mouse cells with either anti-VP1 or anti-VP2/3 antibodies precipitated complexes containing all three species, consistent with the notion that VP1 is necessary for efficient transport of VP2 and VP3 into the nucleus. Purified empty capsid-like particles, formed in nuclei of insect cells coinfected with all three baculoviruses, contained VP2 and VP3 proteins in amounts comparable to those found in empty capsids purified from mouse cells infected with wild-type polyomavirus. Two-dimensional gel analysis of VP1 species revealed that coexpression with VP2 affects posttranslational modification of VP1.  相似文献   

8.
Polyadenylated RNA isolated from the cytoplasm of mouse 3T6 cells 28 h after infection with polyoma virus has been isolated and translated in vitro. Polyoma capsid proteins VP1 and VP2 have been identified in the cell-free product by polyacrylamide gel electrophoresis, specific immunoprecipitation, and tryptic peptide fingerprinting. Polyoma mRNA species have been isolated by preparative hybridization to purified viral DNA immobilized on cellulose nitrate filters and shown to code for both VP1 and VP2. These experiments establish conditions for the isolation of late polyoma mRNA and the cell-free synthesis of polyoma capsid proteins and indicate that the active mRNA species are at least partially virus coded.  相似文献   

9.
10.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. Although transport of virions to the nucleus is an important step in JCV infection, the mechanism of this process has remained unclear. The outer shell of the JCV virion comprises the major capsid protein VP1, which possesses a putative nuclear localization signal (NLS), and virus-like particles (VLPs) consisting of recombinant VP1 exhibit a virion-like structure and physiological functions (cellular attachment and intracytoplasmic trafficking) similar to those of JCV virions. We have now investigated the mechanism of nuclear transport of JCV with the use of VLPs. Wild-type VLPs (wtVLPs) entered the nucleus of most HeLa or SVG cells. The virion structure of VLPs was preserved during transport to the nucleus as revealed by confocal microscopy of cells inoculated with fluorescein isothiocyanate-labeled wtVLPs containing packaged Cy3. The nuclear transport of wtVLPs in digitonin-permeabilized cells was dependent on the addition of importins alpha and beta and was prevented by wheat germ agglutinin or by antibodies to the nuclear pore complex. The nuclear entry of VLPs composed of VP1 with a mutated NLS was greatly inhibited, compared with that of wtVLPs, in both intact and permeabilized cells. Unlike wtVLPs, the mutant VLPs did not bind to importins alpha or beta. Limited proteolysis analysis revealed that the NLS of VP1 was exposed on the surface of wtVLPs. These results suggest that JCV VLPs bind to cellular importins via the NLS of VP1 and are transported into the nucleus through the nuclear pore complex.  相似文献   

11.
A mammalian baculovirus delivery system was developed to study targeting in Norden Laboratories feline kidney (NLFK) cells of the capsid proteins of canine parvovirus (CPV), VP1 and VP2, or corresponding counterparts fused to EGFP. VP1 and VP2, when expressed alone, both had equal nuclear and cytoplasmic distribution. However, assembled form of VP2 had a predominantly cytoplasmic localization. When VP1 and VP2 were simultaneously present in cells, their nuclear localization increased. Thus, confocal immunofluorescence analysis of cells transduced with the different baculovirus constructs or combinations thereof in the absence or presence of infecting CPV revealed that the VP1 protein is a prerequisite for efficient targeting of VP2 to the nucleus. The baculovirus vectors were functional and the genes of interest efficiently introduced to this CPV susceptible mammalian cell line. Thus, we show evidence that the system could be utilized to study targeting of the CPV capsid proteins.  相似文献   

12.
The simian virus 40 agnoprotein is a 61-amino-acid, highly basic polypeptide that is coded within the 5' leader of late 16S mRNAs. To better understand agnoprotein function and to more effectively differentiate cis-from trans-acting effects of an agnogene mutation, we constructed a mutant virus that carries a single-base-pair substitution and fails to produce agnoprotein. pm 1493 contains a T/A to A/T transversion at sequence position 335. This mutation converts the agnoprotein initiation codon from ATG to TTG, preventing synthesis of the protein. The mutant displays only a modest growth defect in CV-1P and AGMK cells and no defect in BSC-1 cells. Early-gene expression, DNA replication, synthesis of late viral products, and the kinetics of virion assembly all appear normal in pm 1493-infected CV-1P cells. Immunofluorescent studies, however, indicate that localization of the major capsid polypeptide VP1 is different in mutant- than wild-type virus-infected cells. Furthermore, the lack of agnoprotein led to inefficient release of mature virus from the infected cell. Agnogene mutants could be severely compromised in their ability to propagate in monkeys given their reduced capacity for cell-to-cell spread.  相似文献   

13.
Viruses of the family Polyomaviridae infect a wide variety of avian and mammalian hosts with a broad spectrum of outcomes including asymptomatic infection, acute systemic disease, and tumor induction. In this study a novel polyomavirus, the African elephant polyomavirus 1 (AelPyV-1) found in a protruding hyperplastic fibrous lesion on the trunk of an African elephant (Loxodonta africana) was characterized. The AelPyV-1 genome is 5722 bp in size and is one of the largest polyomaviruses characterized to date. Analysis of the AelPyV-1 genome reveals five putative open-reading frames coding for the classic small and large T antigens in the early region, and the VP1, VP2 and VP3 capsid proteins in the late region. In the area preceding the VP2 start codon three putative open-reading frames, possibly coding for an agnoprotein, could be localized. A regulatory, non-coding region separates the 2 coding regions. Unique for polyomaviruses is the presence of a second 854 bp long non-coding region between the end of the early region and the end of the late region. Based on maximum likelihood phylogenetic analyses of the large T antigen of the AelPyV-1 and 61 other polyomavirus sequences, AelPyV-1 clusters within a heterogeneous group of polyomaviruses that have been isolated from bats, new world primates and rodents.  相似文献   

14.
Infectious bursal disease virus (IBDV) is a nonenveloped virus with an icosahedral capsid composed of two proteins, VP2 and VP3, that derive from the processing of the polyprotein NH(2)-pVP2-VP4-VP3-COOH. The virion contains VP1, the viral polymerase, which is both free and covalently linked to the two double-stranded RNA (dsRNA) genomic segments. In this study, the virus assembly process was studied further with the baculovirus expression system. While expression of the wild-type polyprotein was not found to be self-sufficient to give rise to virus-like particles (VLPs), deletion or replacement of the five C-terminal residues of VP3 was observed to promote capsid assembly. Indeed, the single deletion of the C-terminal glutamic acid was sufficient to induce VLP formation. Moreover, fusion of various peptides or small proteins (a green fluorescent protein or a truncated form of ovalbumin) at the C terminus of VP3 also promoted capsid assembly, suggesting that assembly required screening of the negative charges at the C terminus of VP3. The fused polypeptides mimicked the effect of VP1, which interacts with VP3 to promote VLP assembly. The C-terminal segment of VP3 was found to contain two functional domains. While the very last five residues of VP3 mainly controlled both assembly and capsid architecture, the five preceding residues constituted the VP1 (and possibly the pVP2/VP2) binding domain. Finally, we showed that capsid formation is associated with VP2 maturation, demonstrating that the protease VP4 is involved in the virus assembly process.  相似文献   

15.
Norwalk virus (NV) is the prototype strain of a group of noncultivable human caliciviruses responsible for epidemic outbreaks of acute gastroenteritis. The capsid protein VP1 is synthesized from a subgenomic RNA that contains two open reading frames (ORFs), ORF2 and ORF3, and the 3' untranslated region (UTR). ORF2 and ORF3 code for the capsid protein (VP1) and a small structural basic protein (VP2), respectively. We discovered that the yields of virus-like particles (VLPs) composed of VP1 are significantly reduced when this protein is expressed from ORF2 alone. To determine how the 3' terminus of the NV subgenomic RNA regulates VP1 expression, we compared VP1 expression levels by using recombinant baculovirus constructs containing different 3' elements. High VP1 levels were detected by using a recombinant baculovirus that contained ORF2, ORF3, and the 3'UTR (ORF2+3+3'UTR). In contrast, expression of VP1 from constructs that lacked the 3'UTR (ORF2+3), ORF3 (ORF2+3'UTR), or both (ORF2 alone) was highly reduced. Elimination of VP2 synthesis from the subgenomic RNA by mutation resulted in VP1 levels similar to those obtained with the ORF2 construct alone, suggesting a cis role for VP2 in upregulation of VP1 expression levels. Comparisons of the kinetics of RNA and capsid protein expression levels by using constructs with or without ORF3 or the 3'UTR revealed that the 3'UTR increased the levels of VP1 RNA, whereas the presence of VP2 resulted in increased levels of VP1. Furthermore, VP2 increased VP1 stability and protected VP1 from disassembly and protease degradation. The increase in VP1 expression levels caused by the presence of VP2 in cis was also observed in mammalian cells.  相似文献   

16.
The major structural viral protein, VP1, of the human polyomavirus JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), was expressed by using recombinant baculoviruses. Recombinant VP1 formed virus-like particles (VLP) with the typical morphology of empty JCV capsids. Purified VP1 VLP bind to SVG, B, and T cells, as well as to monkey kidney cells. After binding, VP1 VLP were also internalized with high efficiency and transported to the nucleus. Immunization studies revealed these particles as highly immunogenic when administered with adjuvant, while immunization without adjuvant induced no immune response. VP1 VLP hyperimmune serum inhibits binding to SVG cells and neutralizes natural JCV. Furthermore, the potential of VP1 VLP as an efficient transporter system for gene therapy was demonstrated. Exogenous DNA could be efficiently packaged into VP1 VLP, and the packaged DNA was transferred into COS-7 cells as shown by the expression of a marker gene. Thus, VP1 VLP are useful for PML vaccine development and represent a potential new transporter system for human gene therapy.  相似文献   

17.
18.
A E Smith  R Kamen  W F Mangel  H Shure  T Wheeler 《Cell》1976,9(3):481-487
The 19S and 16S polyoma virus late mRNAs have been separated on sucrose-formamide density gradients and translated in vitro. The 16S RNA codes only for polyoma capsid protein VP1, while the 19S RNA codes in addition for capsid protein VP2. Since the 19S and 16S species have been previously mapped on the viral genome, these results allow us to deduce the location of the sequences coding for VP1 and VP2. Comparison of the chain lengths of the capsid proteins with the size of the viral mRNAs coding for them suggests that VP1 and VP2 are entirely virus-coded. Purified polyoma 19S RNA directs the synthesis of very little VP1 in vitro, although it contains all the sequences required to code for the protein. The initiation site for VP1 synthesis which is located at an internal position on the messenger is probably inactive either because it is inaccessible or because it lacks an adjacent "capped" 5' terminus. Similar inactive internal initiation sites have been reported for other eucarotic viral mRNAs (for example, Semliki forest virus, Brome mosaic virus, and tobacco mosaic virus), suggesting that while eucaryotic mRNAs may have more than one initiation site for protein synthesis, only those sites nearer the 5' terminus of the mRNA are active.  相似文献   

19.
20.
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号