首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
通过对广义蓼属及近缘属共32个代表种内转录间隔区ITS序列的分子系统学分析,尝试研究备受争议的广义蓼属及近缘属的物种族、属、组级的划分问题,结果显示,广义蓼属在系统发育树上并不能形成一个单系类群,这些物种共聚为3大支,分别对应春蓼族、蓼族及荞麦族,其中荞麦属与翅果蓼属形成了一支独立于春蓼族及蓼族之外的类群。在春蓼族中,冰岛蓼属与分叉蓼组形成一个单系类群。  相似文献   

2.
通过对广义蓼属及近缘属共32个代表种内转录间隔区ITS序列的分子系统学分析,尝试研究备受争议的广义蓼属及近缘属的物种族、属、组级的划分问题,结果显示,广义蓼属在系统发育树上并不能形成一个单系类群,这些物种共聚为3大支,分别对应春蓼族、蓼族及荞麦族,其中荞麦属与翅果蓼属形成了一支独立于春蓼族及蓼族之外的类群。在春蓼族中,冰岛蓼属与分叉蓼组形成一个单系类群。  相似文献   

3.
In order to investigate the taxonomic value of a number of characters in the elucidation of relationships within the collective genus Polygonum L., and segregate genera Atraphaxis L., Calligonum L., Pteropyrum Jaub. & Spach., Oxygonum Burch., Fagopyrum Mill., Harpagocarpus Hutch. & Dandy and Polygonella Michx., 83 species of the tribe Polygoneae emend. Jaretzky were studied. The following floral characters were examined: stamen number, insertion and external morphology; structure and morphology of the floral nectaries; vasculature and surface morphology of the tepals.
Problems in floral morphology in Polygonaceae are discussed, together with relationships within the Family. The tribal division proposed by Haraldson (1978) is supported, but a new and different delimitation of genera is proposed. The present data support a division of Polygonum L. sensu lato and its related taxa into two tribes: Polygoneae (containing Polygonum L. sensu stricto, Fallopia Adans., Oxygonum Burch., Pteropyrum Jaub. & Sparh., Atraphaxis L. and Calligonum L.), and Persicarieae (containing Fagopyrum Mill., Harpagocarpus Hutch. & Dandy, Persicaria Mill. and Koenigia L.). The genus Reynoutria Houtt. is included as a section of Fallopia Adans.; Bislorta Mill., Aconogonon Reichenb. and Tovara Adans. are included within Persicaria Mill.
A number of new combinations are proposed in Persicaria and Fallopia .  相似文献   

4.
应用光学显微镜和扫描电子显微镜对29种野豌豆属植物叶表皮微形态特征进行了观察。结果显示:叶表皮细胞形状有无规则形和多边形2种,垂周壁式样有深波状、浅波状和平直-弓形;表皮角质层纹饰微形态多样,大多数植物叶片表面不具有腺毛或仅中脉有,少数植物叶片表面具腺毛;部分叶表皮上有柔毛,少数植物无毛。气孔器存在于上表皮、下表皮、或上下表皮均有,形状为椭圆形、卵圆形,均为无规则型。野豌豆属植物叶表皮的这些微形态特征,在属内组间没有明确的规律性,但可为探讨该属种间的分类学及亲缘关系提供依据。  相似文献   

5.
Gross morphology, fruit anatomy, tepal venation, pollen morphology, chromosome number and ITS sequence of Pteroxygonum Damm. & Diels as well as other related genera (Polygonum, Fallopia, Reynoutria, Fagopyrum, and Antenoron) have been investigated to evaluate the generic status of Pteroxygonum. Pt. giraldii Damm. & Diels has three sharp horns at the base of fruit, which is distinctive among all the genera investigated. Upon observation of fruits under a light microscope (LM), the exocarp of Pt. giraldii is usually thickened and delimited by the rectangular cells with some sporadic undulating lumen, while that of Fagopyrum is thin-walled and isodiametric to rectangular in the cell shape. Analysis of tepal venation was performed under a stereomicroscope, and two types of tepal venation were found in Fagopyrum and Pteroxygonum. The type I is trifid, observed in Pt. giraldii, F. esculentum Moench, F. dibotrys (D. Don) Hara and F. tataricum (L.) Gaertn. The type II, found in F. caudatum (Sam.) A. J. Li, F. urophyllum (Bur. & Franch.) H. Gross and F. gracilipes (Hemsl.) Damm. ex Diels, has the main vein extending from tepal base with some secondary veins. Evidence from tepal venation supports the previous classification in which Fagopyrum can be divided into a large-achene group and a small-achene group. Pollen morphology was investigated under a scanning electron microscope (SEM). The exine ornamentation of Pt. giraldii was finely reticulate with lumina diameter wider than muri width. The exine ornamentation in all the examined Fagopyrum species is, however, prominently sunken punctuate. The phylogenetic analysis of nuclear ribosomal DNA (nrDNA) ITS sequences in Pteroxygonum and related genera indicated that all the species form a well-supported monophyletic group with two clades. One includes Polygonum sect. Avicularia Meisn., genus Fallopia and genus Reynoutria, and the other consists of other sections of Polygonum, genus Fagopyrum and Pteroxygonum. The latter clade can be divided into two subclades. Fagopyrum species compose the first one, while Pteroxygonum giraldii, species of Polygonum (except sect. Avicularia) and Antenoron form the second one. In consideration of the above evidence, we conclude that Pteroxygonum is an independent genus in tribe Persicarieae, and should not be merged into the genus Fagopyrum.  相似文献   

6.
通过对翼蓼Pteroxygonum giraldii Damm. &; Diels及相关属(蓼属Polygonum、何首乌属Fallopia、虎杖属Reynoutria、荞麦属Fagopyrum和金线草属Antenoron)的形态观察、果实解剖学观察、花被片脉序观察、花粉形态、核型分析, 以及ITS序列的分析确定了翼蓼和荞麦F. esculentum Moench较远的亲缘关系。其中我们发现翼蓼果实基部有三个角状物明显不同于其他属果实的形态特征。翼蓼外果皮明显加厚, 并有零星散布的波状内腔, 而荞麦的外果皮很薄, 细胞不等径, 中果皮极厚。以上证据证明了翼蓼与荞麦属亲缘关系较远。在观察荞麦属和翼蓼的花被片脉络时发现了两种不同的脉序类型, 符合将荞麦属分为两个组的划分。翼蓼花被片脉序为三出状, 支持将翼蓼归为Persicarieae族。对翼蓼及荞麦属植物的花粉进行比较后, 发现荞麦属植物的花粉网孔有明显的内凹穿孔而翼蓼却没有, 结果表明二者亲缘关系较远。通过对nrDNA ITS区域序列分析得出翼蓼及相关属为一个单系类群, 含有两个稳定的分支: 第一个分支由蓼属(萹蓄组sect. Avicularia)、何首乌属、虎杖属的植物组成, 第二个分支由蓼属(刺蓼组sect. Echinocaulon、蓼组sect. Polygonum、分叉蓼组sect. Aconogonon、拳参组sect. Bistorta、翼蓼和荞麦属植物组成。同时第二个分支又分成了两个亚分支, 蓼属(刺蓼组、蓼组、分叉蓼组、拳参组)和翼蓼属Pteroxygonum植物属于第一个亚支而荞麦属植物属于第二个亚支。结果支持翼蓼不属于荞麦属的范畴。实验结果显示翼蓼是个单型属, 属于Persicarieae族。  相似文献   

7.
十字花科四属植物叶片的表皮特征   总被引:9,自引:0,他引:9  
对十字花科岩荠属、阴山荠属、泡果荠属、棒毛荠 属植物的叶表皮特征进行了扫描电镜观察,结果表明:表皮细胞多为不规则形,气孔主要分布于表皮,垂周壁上有明显的波状嵴或沟槽状下陷,平周壁上有各咱条纹状角质层纹饰。这些微形态特征在属间有明显的类群特异性,又有一定的过渡类型,为岩荠属及近缘属的合理划分提供一定的证据。  相似文献   

8.
The epidermal characters of mature leaves of 29 genera, 50 species and 3 varieties (totally 56 samples) representing all the 5 tribes in the family Menispermaceae were examined under the light microscope. The main conclusions are as follows: (1) The shape of the epidermal cells is polygonal or irregular, and the anticlinal walls are straight or waved in the family. In some genera a special arrangement of epidermal cells is named as “rosette-cell arrangement" for the first time. The lower epidermal cells were found to have a papilla in Stephania, Diploclisia and Legnephora . (2) In some genera, the anticlinal walls are oblique, rather than perpendicular, to the surface. (3) The stomatal apparatuses, generally restricted to the lower surface of the leaves, were assigned to anomocytic, staurocytic, cyclocytic, anisocytic and actinocytic types, and their distribution on the epidermis may be of diffuse pattern or island congregating pattern. (4) The cells of both upper and lower epidermis in the tribe Pachygoneae and Fibraureae are generally polygonal with straight or arched anticlinal walls, and the stomatal apparatuses are usually staurocytic and actinocytic. The cyclocytic stomatal apparatus was found only in two genera of the tribe Pachygoneae. By contrast, the epidermal cells of the tribes Anomospermeae, Tinosporeae and Menispermeae are generally irregular with waved anticlinal walls, and the stomatal apparatuses are predominantly anomocytic. These correlated characters are of much significance in delimiting tribes within the Menispermaceae, and also provide evidence for studies on systematic relationships of several genera.  相似文献   

9.
10.
S. C. Chafe  A. B. Wardrop 《Planta》1972,107(3):269-278
Summary The organization of the wall of epidermal cells in the petiole of species of Apium, Eryngium, Rumex, and Abutilon as well as that of the epidermis of Avena coleoptile has been investigated. The outer and inner tangential walls consist of layers in which the cellulose microfibrils are oriented alternately parallel or transverse to the longitudinal cell axis. This organization resembles that previously described for collenchyma cell walls (Wardrop, 1969; Chafe, 1970). On the radial (anticlinal) walls the orientation of the microfibrils is transverse and these appear continuous with the layers of transverse orientation of the outer and inner tangential walls. Variation in thickness of the outer tangential, and radial, and inner tangential walls appears to result from the variation in thickness of those layers in which the microfibrils have a longitudinal orientation. The extent to which these observations can interpreted in terms of some type of modified multi-net growth is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号