首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蓝藻堆积和螺类牧食对苦草生长的影响   总被引:2,自引:0,他引:2  
何虎  何宇虹  姬娅婵  郭亮  刘正文  李宽意 《生态学报》2012,32(17):5562-5567
设计了双因素四组处理(对照组,加螺组,加藻组,螺藻组)的室外受控实验,模拟湖泊沿岸带水华蓝藻的堆积以及底栖螺类的牧食活动对沉水植物苦草生长的影响。结果表明:蓝藻堆积(水体叶绿素a浓度为220μg/L)对苦草的生长具有明显的抑制作用,和对照组以及加螺组相比,加藻组和螺藻组中苦草的相对生长率分别下降了40.9%和36.4%,分株数也分别下降了56.4%和64.1%,分析认为蓝藻在水体表层堆积所产生的遮光可能是抑制底层苦草生长的主要原因。然而,环棱螺能在一定程度上促进苦草的生长,加螺组和螺藻组中苦草的相对生长率和分株数分别要明显高于对照组和加藻组,这可能要归因于螺类的牧食去除了沉水植物表面附着生物。实验中蓝藻堆积和螺类牧食对苦草的各项生长指标均无显著的交互作用,但蓝藻对苦草生长的抑制作用要远大于螺类对植物生长的促进作用。研究证实了在富营养浅水湖泊中,水华蓝藻在湖泊沿岸带的堆积会严重胁迫沉水植物的生长,而底栖螺类的牧食活动则能在一定程度上提高植物在不良环境下的生存能力。  相似文献   

2.
Marine studies on herbivory have addressed the role of algae as food and shelter for small consumers, but the potential of benthic cyanobacteria to play similar roles is largely unknown. Here, feeding preferences were measured for eight invertebrate consumers from Guam, offered four common macroalgae and two cyanobacteria. The survivorship of another consumer raised on either macroalgae or cyanobacteria was also assessed. From the choices offered, the sacoglossans Elysia rufescens and E. ornata consumed the green macroalga Bryopsis pennata. The crab Menaethius monoceros preferred the red alga Acanthophora spicifera. The amphipods Parhyale hawaiensis and Cymadusa imbroglio consumed macroalgae and cyanobacteria in equivalent amounts, with C. imbroglio showing less selectivity among diets. In contrast to these patterns, in these assays the gastropods Stylocheilus striatus, Haminoea cymbalum, H. ovalis, and Haminoea sp. fed exclusively, or survived only, on cyanobacteria. Preferences for different cyanobacteria varied. Field surveys of cyanobacteria-associated species yielded 34 different invertebrate taxa and suggested different degrees of specificity in these associations. Tropical mesograzers exploit considerably different food resources, with some species adapted to consume cyanobacterial mats. Benthic cyanobacteria may play important roles as food and shelter for marine consumers and may indirectly influence local biodiversity through their associated fauna.  相似文献   

3.
In lakes, benthic micro-algae and cyanobacteria (periphyton) can contribute significantly to total primary productivity and provide important food sources for benthic invertebrates. Despite recognition of their importance, few studies have explored the diversity of the algal and cyanobacterial composition of periphyton mats in temperate lakes. In this study, we sampled periphyton from three New Zealand lakes: Tikitapu (oligotrophic), ōkāreka (mesotrophic) and Rotoiti (eutrophic). Statistical analysis of morphological data showed a clear delineation in community structure among lakes and highlighted the importance of cyanobacteria. Automated rRNA intergenic spacer analysis (ARISA) and 16S rRNA gene clone libraries were used to investigate cyanobacterial diversity. Despite the close geographic proximity of the lakes, cyanobacterial species differed markedly. The 16S rRNA gene sequence analysis identified eight cyanobacterial OTUs. A comparison with other known cyanobacterial sequences in GenBank showed relatively low similarities (91-97%). Cyanotoxin analysis identified nodularin in all mats from Lake Tikitapu. ndaF gene sequences from these samples had very low (≤ 89%) homology to sequences in other known nodularin producers. To our knowledge, this is the first detection of nodularin in a freshwater environment in the absence of Nodularia. Six cyanobacteria species were isolated from Lake Tikitapu mats. None were found to produce nodularin. Five of the species shared low (< 97%) 16S rRNA gene sequence similarities with other cultured cyanobacteria.  相似文献   

4.
水华蓝藻对鱼类的营养毒理学效应   总被引:2,自引:0,他引:2  
董桂芳  解绶启  朱晓鸣  韩冬  杨云霞 《生态学报》2012,32(19):6233-6241
水体富营养化导致蓝藻水华的发生已成为全球关注的水环境问题,很多鱼类处于水生态系统食物链的最高级,蓝藻水华的主要次级代谢产物-微囊藻毒素可通过鱼类的摄食活动或生物富集作用在鱼体组织中累积,并通过食物链危及人类健康。近年来,微囊藻毒素对鱼类的毒性效应引起众多科学家的关注。在天然水体中不少鱼类可以主动摄食蓝藻,所以,水华蓝藻对鱼类来说既具有营养物作用、也具有潜在的毒性作用。鉴于目前机械收获的水华蓝藻生物量资源化利用问题以及水产饲料业亟需大力开发鱼粉替代蛋白源的需要,从营养学和毒理学这两个角度来研究水华蓝藻对鱼类的营养作用和毒性效应具有较高的理论和现实意义。主要概述了蓝藻粉、蓝藻细胞对鱼类的营养学和毒理学效应,以期拓展水华蓝藻对鱼类毒性效应的研究视野,同时也为水华蓝藻的资源化利用提供新的思路。  相似文献   

5.
A key process in freshwater plankton food webs is the regulation of the efficiency of energy and material transfer. Cyanobacterial carbon (C) in particular is transferred very inefficiently to herbivorous zooplankton, which leads to a decoupling of primary and secondary production and the accumulation of cyanobacterial biomass, which is associated with reduced recreational quality of water bodies and hazards to human health. A recent correlative field study suggested that the low transfer efficiency of cyanobacterial C is the result of the absence of long-chain polyunsaturated fatty acids (PUFA) in the diet of the zooplankton. By supplementation of single-lipid compounds in controlled growth experiments, we show here that the low C transfer efficiency of coccal and filamentous cyanobacteria to the keystone herbivore Daphnia is caused by the low sterol content in cyanobacteria, which constrains cholesterol synthesis and thereby growth and reproduction of the herbivore. Estimations of sterol requirement in Daphnia suggest that, when cyanobacteria comprise more than 80% of the grazed phytoplankton, growth of the herbivore may be limited by sterols and Daphnia may subsequently fail to control phytoplankton biomass. Dietary sterols therefore may play a key role in freshwater food webs and in the control of water quality in lakes dominated by cyanobacteria.  相似文献   

6.
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been considered a serious health threat because of its putative role in multiple neurodegenerative diseases. First reports on BMAA concentrations in cyanobacteria were alarming: nearly all cyanobacteria were assumed to contain high BMAA concentrations, implying ubiquitous exposure. Recent studies however question this presence of high BMAA concentrations in cyanobacteria. To assess the real risk of BMAA to human health, this discrepancy must be resolved. We therefore tested whether the differences found could be caused by the analytical methods used in different studies. Eight cyanobacterial samples and two control samples were analyzed by three commonly used methods: HPLC-FLD analysis and LC-MS/MS analysis of both derivatized and underivatized samples. In line with published results, HPLC-FLD detected relatively high BMAA concentrations in some cyanobacterial samples, while both LC-MS/MS methods only detected BMAA in the positive control (cycad seed sarcotesta). Because we could eliminate the use of different samples and treatments as causal factors, we demonstrate that the observed differences were caused by the analytical methods. We conclude that HPLC-FLD overestimated BMAA concentrations in some cyanobacterial samples due to its low selectivity and propose that BMAA might be present in (some) cyanobacteria, but in the low μg/g or ng/g range instead of the high μg/g range as sometimes reported before. We therefore recommend to use only selective and sensitive analytical methods like LC-MS/MS for BMAA analysis. Although possibly present in low concentrations in cyanobacteria, BMAA can still form a health risk. Recent evidence on BMAA accumulation in aquatic food chains suggests human exposure through consumption of fish and shellfish which expectedly exceeds exposure through cyanobacteria.  相似文献   

7.
蓝藻毒素对底栖动物的毒理学研究进展   总被引:1,自引:0,他引:1  
薛庆举  苏小妹  谢丽强 《生态学报》2015,35(14):4570-4578
近年,由于人类活动加剧,大量氮磷等营养物质流入湖泊等缓流水体,导致水体富营养化。而由此引起有害蓝藻水华的频繁爆发,使生态环境和人类健康受到严重威胁。相关研究表明,蓝藻水华的爆发不仅能够使水体水质恶化,其中一些产毒藻类还会产生大量蓝藻毒素,对水生生物产生重要影响。底栖动物作为水体生态系统的重要组成部分,在食物网中有重要作用,同时其中的许多种类又与人类息息相关,因此关于水华蓝藻毒素对淡水底栖动物的毒理学研究具有重要意义。在介绍蓝藻毒素概况的基础上,综述了蓝藻毒素的致毒机理和对底栖动物的影响,展望了研究方向。  相似文献   

8.
Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ15N close to -2‰, we expected the δ15N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia) showed significantly lower δ15N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and intra- and interspecific competition.  相似文献   

9.
Cyanobacterial blooms are predicted to become more prominent in the future as a result of increasing seawater temperatures and the continued addition of nutrients to coastal waters. Many benthic marine cyanobacteria have potent chemical defenses that protect them from top down pressures and contribute to the persistence of blooms. Blooms of benthic cyanobacteria have been observed along the coast of Florida and within the Indian River Lagoon (IRL), a biodiverse estuary system that spans 250 km along Florida’s east coast. In this study, the cyanobacterial bloom progression at three sites within the central IRL was monitored over the course of two summers. The blooms consisted of four unique cyanobacterial species, including the recently described Okeania erythroflocculosa. The cyanobacteria produced a range of known bioactive compounds including malyngolide, lyngbyoic acid, microcolins A–B, and desacetylmicrocolin B. Ecologically-relevant assays showed that malyngolide inhibited the growth of marine fungi (Dendryphiella salina and Lindra thalassiae); microcolins A–B and desacetylmicrocolin B inhibited feeding by a generalist herbivore, the sea urchin Lytechinus variegatus; and lyngbyoic acid inhibited fungal growth and herbivore feeding. These chemical defenses likely contribute to the persistence of cyanobacterial blooms in the IRL during the summer growing period.  相似文献   

10.
The direct harmful effects of ultraviolet radiation (UVR) on benthic and planktonic organisms have been well studied in aquatic systems. Less clear, however, is how UVR might affect aquatic communities through its effects on trophic interactions. The focus of this study was twofold: first, to examine the direct effect of UVR on benthic invertebrates and epilithon, the rock-dwelling matrix of algae, bacteria, viruses, fungi and detritus, and second, to examine the indirect effect of UVR-mediated shifts in epilithic food quality on epilithic consumers. Food quality was assessed by measuring carbon to nutrient ratios and the concentration of polyunsaturated fatty acids (PUFA) in the epilithic matrix; the effect of its change on epilithic consumers was measured using a feeding experiment. The study was conducted in four montane lakes, where downwelling UVR can be intense. Of these lakes, the benthic community of only one was strongly affected by UVR. In this lake, exposure to UVR decreased epilithic accrual and invertebrate colonization, and, contrary to our expectations, increased food quality in the shallows through decreased carbon to phosphorus ratios and increased PUFA concentrations. In another of the four study lakes, the feeding experiment showed no significant difference in growth rates between invertebrates fed UVR-exposed and UVR-shielded epilithon, or invertebrates directly exposed to or shielded from UVR. This study demonstrates that although UVR can play an important role in structuring the trophic dynamics of benthic communities, its effects will not be constant across systems, or important in all environments.  相似文献   

11.
Consumers are usually thought of as negatively affecting producers, but they can affect them positively by releasing nutrients (nutrient regeneration). The net effects of consumers on producers should depend on the balance between the effects of consumption and nutrient regeneration. In aquatic habitats, nutrient regeneration by consumers may increase microbial activity on leaf detritus as well as algal production, which in turn may stimulate further nutrient release and benefit herbivores or detritivores by increasing food quantity or quality. Omnivores can regenerate nutrients from animals, algae and detritus, creating diverse nutrient pathways. Many tadpoles are omnivores, and their nutrient regeneration may be important in aquatic food webs. To reveal the nutrient pathways created by tadpoles and examine whether omnivorous tadpoles can have positive effects on producers and consumers, we experimentally examined the effects of nutrient regeneration by three densities of tadpoles on primary producers, leaf litter, and other consumers in tank mesocosms. Tadpole exclosures were placed inside each mesocosm, allowing us to separate direct consumption effects from indirect nutrient regeneration effects. Nutrient regeneration caused by the herbivorous and carnivorous feeding activities of tadpoles positively affected rates of production of benthic algae, phytoplankton, and herbivorous benthic chironomid larvae, and rates of mineralization of leaf litter. The increased production of benthic algae and chironomid larvae was consumed by the tadpoles themselves, leaving no net change in the standing biomass of these resources. Our experiment thus demonstrated that omnivores created complicated nutrient pathways and accelerated rates of primary production and growth rates of other consumers, leading to increased rates of food availability to the omnivores themselves. Interactions of this nature may be common in many systems and could strongly moderate the effects of consumers on their resources and each other.  相似文献   

12.
1. The ability of roach to use cyanobacterial food is generally believed to be one reason for the dominance of roach over perch in eutrophic European lakes. The aim of this study was to test whether cyanobacteria really are a suitable food for juvenile roach. Special attention was paid to differences between the two cyanobacteria species Aphanizomenon and Microcystis which are common in eutrophic lakes and are ingested by roach there.
2. We performed growth and behaviour experiments with juvenile roach fed with zooplankton and the different cyanobacteria. Growth rate with Aphanizomenon was lower than with Daphnia but significantly higher than without food, whereas growth rate with Microcystis was as low as without food.
3. In cultivation experiments of roach faeces, Microcystis was found not to have been digested and grew exponentially after passing through the gut whereas Aphanizomenon stayed at low biomass. Differences in growth were not related to the toxin content of cyanobacteria. Investigations of roach motility showed no differences whether fed with Aphanizomenon or Microcystis .
4. In contrast to Microcystis , Aphanizomenon can be regarded as a suitable food source for juvenile roach probably because of its better digestability. We conclude that the ability to feed on cyanobacteria is not a general competitive advantage for roach, but the outcome depends on the species composition of the cyanobacteria.  相似文献   

13.
Competition between large and small species for the same food is common in a number of ecosystems including aquatic ones. How diversity of larger consumers affects the access of smaller competitors to a limiting resource is not well understood. We tested experimentally how species richness (0–3 spp.) of benthic deposit-feeding macrofauna changes meiofaunal ostracods’ incorporation of fresh organic matter from a stable-isotope-labeled cyanobacterial bloom, using fauna from the species-poor Baltic Sea. Presence of macrofauna mostly decreased meiofaunal incorporation of bloom material, depending on the macrofauna species present. As expected, the species identity of macrofauna influenced the incorporation of organic matter by meiofauna. Interestingly, our results show that, in addition, species richness of the macrofauna significantly reduced meiofauna incorporation of freshly settled nitrogen and carbon. With more than one macrofauna species, the reduction was always greater than expected from the single-species treatments. Field data from the Baltic Sea showed a negative correlation between macrofauna diversity and meiofaunal ostracod abundance, as expected from the experimental results. We argue that this is caused by interference competition, due to spatial niche differentiation between macrofauna species reducing the sediment volume in which ostracods can feed undisturbed by larger competitors. Interference from macrofauna significantly reduces organic matter incorporation by meiofauna, indicating that diversity of larger consumers is an important factor controlling the access of smaller competitors to a limiting food resource.  相似文献   

14.
Ecological functions of volatile organic compounds in aquatic systems   总被引:1,自引:0,他引:1  
In terrestrial ecosystems, volatile organic compounds (VOCs) are widely acknowledged as an important group of infochemicals. They play a major role in pollinator attraction by terrestrial plants and as insect pheromones. Furthermore, they are the mediating agent of so-called 'tritrophic interactions'. When plants are attacked by herbivorous insects, volatile signal substances are emitted, which act as attractants for parasitoids that kill the herbivores, thereby protecting the plant from herbivory. Despite the generally acknowledged importance of VOCs in terrestrial chemical ecology, their functions in aquatic food webs are largely unknown. VOCs produced by algae and cyanobacteria are a major concern in water processing, since aquatic primary producers are the reason for regularly encountered taste and odour problems in drinking water. Only very recently, research in aquatic chemical ecology has started to investigate possible ecological functions for the production of VOCs by algae and cyanobacteria. Volatile aldehydes released by wounded cells of marine planktonic diatoms seem to act as defensive compounds against herbivorous copepods on the population level. Just recently, it was found that VOCs released from benthic algae and cyanobacteria can be utilised as food and/or habitat finding cues by aquatic invertebrates such as freshwater gastropods and nematodes. Here, I review concepts and recent experimental studies on the ecological functions of such VOCs in aquatic ecosystems. Understanding the factors that lead to the liberation of volatile compounds is an essential prerequisite to properly assessing their ecological functions. It appears that (similar to terrestrial plant-herbivore interactions) VOCs can also play a steering role for both attraction and defence in aquatic ecosystems.  相似文献   

15.
Changes in the complexity of planktonic food webs may be expected in future aquatic systems due to increases in sea surface temperature and an enhanced stratification of the water column. Under these conditions, the growth of unpalatable, filamentous, N2‐fixing cyanobacterial blooms, and their effect on planktonic food webs will become increasingly important. The planktonic food web structure in aquatic ecosystems at times of filamentous cyanobacterial blooms is currently unresolved, with discordant lines of evidence suggesting that herbivores dominate the mesozooplankton or that mesozooplankton organisms are mainly carnivorous. Here, we use a set of proxies derived from amino acid nitrogen stable isotopes from two mesozooplankton size fractions to identify changes in the nitrogen source and the planktonic food web structure across different microplankton communities. A transition from herbivory to carnivory in mesozooplankton between more eutrophic, near‐coastal sites and more oligotrophic, offshore sites was accompanied by an increasing diversity of microplankton communities with aging filamentous cyanobacterial blooms. Our analyses of 124 biotic and abiotic variables using multivariate statistics confirmed salinity as a major driver for the biomass distribution of non‐N2‐fixing microplankton species such as dinoflagellates. However, we provide strong evidence that stratification, N2 fixation, and the stage of the cyanobacterial blooms regulated much of the microplankton diversity and the mean trophic position and size of the metabolic nitrogen pool in mesozooplankton. Our empirical, macroscale data set consistently unifies contrasting results of the dominant feeding mode in mesozooplankton during blooms of unpalatable, filamentous, N2‐fixing cyanobacteria by identifying the at times important role of heterotrophic microbial food webs. Thus, carnivory, rather than herbivory, dominates in mesozooplankton during aging and decaying cyanobacterial blooms with hitherto uncharacterized consequences for the biogeochemical functions of mesozooplankton.  相似文献   

16.
长江口水生动物食物网营养结构及其变化   总被引:1,自引:0,他引:1  
为研究长江口水生动物食物网营养结构及其变化, 运用胃含物分析法研究了2016—2017年长江口及其邻近水域捕获的43种水生动物的食性类型与营养结构, 并与20世纪90年代和2006年文献数据进行了比较, 结果表明, 长江口及其邻近水域捕获的水生动物分为4种食性类型: 浮游生物食性、底栖生物食性、游泳生物食性、混合食性, 其中浮游生物食性消费者占绝对优势, 为39.53%; 游泳生物食性消费者所占比例最少, 为11.63%。所分析样品的营养级可分为3级, 其中植食性消费者占优势, 为76.75%; 中级肉食性消费者所占比例最少, 为4.65%; 与20世纪90年代相比, 12种常见鱼类的平均营养级由3.80下降到2.87。长江口水生动物食物网结构较为复杂, 生产者类型包括底栖藻类、浮游植物、有机碎屑3种, 主要由牧食食物链和碎屑食物链构成复杂的食物网。  相似文献   

17.
Mass occurrence of benthic cyanobacterial mats in a sequence of Late Devonian black shales and bituminous limestones of the Holy Cross Mts. (central Poland), enclosing the famous Kellwasser and Hangenberg extinction horizons, is reported. The microbiota forming the mats is compared with some modern benthic chroococcalean cyanobacteria. Similarly to their extant counterparts, the Devonian cyanobacteria must had been phototrophic and oxygenic aerobes which could, however, tolerate slightly sulfidic conditions characterizing the near-bottom waters of the Late Devonian epicontinental sea. The cyanobacterial mats successfully colonized the oxygen-deficient and H(2) S-enriched seabed otherwise unfavorable for most other benthic biota. The redox state of this sluggish Late Devonian sea, ascribed previously mostly to anoxic or euxinic conditions, is reassessed as probably pulsating between anoxic, dysoxic, and weakly oxic conditions. The redox state was dependent on the rate of oxygen production by the cyanobacterial mats, the intensity of H(2) S emissions from the decaying mat biomass, and the rate of planktonic production.  相似文献   

18.
In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 µg C L−1 d−1, ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems.  相似文献   

19.
A bacterial strain SSZ01 isolated from a eutrophic lake in Saudi Arabia dominated by cyanobacterial blooms, showed an antialgal activity against cyanobacteria species. Based on the analysis of the 16S rDNA gene sequence, the isolated strain (SSZ01) most likely belonged to the genus Bacillus with a 99% similarity to Bacillus flexus strain EMGA5. The thin layer chromatography (TLC) analysis of the ethyl acetate extract of this bacterium revealed that this strain can produce harmine and norharmane compared to different β-carboline analog standards. Harmine and norharmane were also detected in considerable amounts in bacterial growth medium, indicating a potential excretion of these compounds into the aquatic environment. The crude extract of Bacillus flexus as well as pure materials of harmine and norharmane inhibited the growth of tested species of cyanobacteria. However, the bacterial crude extract has a higher toxicity against tested species of cyanobacteria than harmine and norharmane. In addition, harmine was more toxic to cyanobacteria than norharmane. On the other hand, neither pure compounds of harmine and norharmane nor crude bacterial extract showed any antialgal activity against tested species of green algae. The results of the present study suggest that B. flexus SSZ01 or its crude extract containing harmine and norharmane could be a candidate for the selective control of cyanobacterial blooms without affecting other algal species.  相似文献   

20.
The increased nitrogen loading from anthropogenic sources has affected aquatic ecosystems and has cascaded through food webs worldwide. Therefore, the evaluation of ecological impacts of anthropogenic nitrogen has become increasingly important. In this paper, we investigated the effect of nutrient enrichment in the planktonic and benthic food webs of a hypereutrophic urban lake using stable nitrogen isotope analysis. The stable isotope mixing model revealed that zooplanktons rely mainly on planktonic nitrogen, and that Chironomus and Oligochaete rely mainly on benthic nitrogen. The stable nitrogen isotope signatures of seston and the sediment organic matter can be a sensitive indicator, because they are correlated with the nitrogen content of water and sediment. Furthermore, the relationships between the stable nitrogen isotope values of primary production and primary consumers indicate that polluted nitrogen has transferred through the planktonic and benthic food webs, respectively. For primary consumers, the stable nitrogen isotope values of zooplanktons were correlated to nitrogen concentrations of water, and the stable nitrogen values of Chironomus and Oligochaete were correlated to the nitrogen content of sediment, respectively. This finding indicates that these primary consumers can be used as promising bioindicators of the anthropogenic nitrogen input in planktonic and benthic food webs, respectively. Our results suggest that stable nitrogen isotope of primary consumers can act as bioindicators to detect the dispersal patterns of anthropogenic contamination and understand the incorporation into and movement of waste nitrogen in pelagic and benthic food chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号