首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
二化螟乙酰胆碱受体α亚基的基因克隆与序列分析   总被引:4,自引:0,他引:4  
烟碱型乙酰胆碱受体(nAChR)在昆虫的兴奋性突触传递中起着重要的作用,同时也是杀虫剂作用的重要靶标。近年来,二化螟对作用于昆虫nAChR的沙蚕毒素类杀虫剂杀虫单产生了高抗性。为了研究可能存在的靶标不敏感机制,我们采用RT-PCR技术,对二化螟nAChR-α亚 基全长cDNA进行了分子克隆。序分析表明,这是1个新的α亚基基因,定名为Cs α 1。基 因全长为1997个核苷酸,包含了1个开放阅读框,编码1个509氨基酸的成熟蛋白和1个24氨基酸的信号肽。Cs α 1与其他昆虫nAChR α亚基之间有52%-94%的同源性,高于与脊椎动物nAChR α亚基之间的同源性。  相似文献   

2.
二化螟乙酰胆碱受体a亚基的基因克隆与序列分析   总被引:2,自引:0,他引:2  
烟碱型乙酰胆碱受体(nAChR)在昆虫的兴奋性突触传递中起着重要的作用,同时也是杀虫剂作用的重要靶标。近年来,二化螟对作用于昆虫nAChR的沙蚕毒素类杀虫剂杀虫单产生了高抗性。为了研究可能存在的靶标不敏感机制,我们采用RT-PCR技术,对二化螟nAChRa亚基全长cDNA进行了分子克隆。序列分析表明,这是1个新的a亚基基因,定名为Cs a 1。基因全长为1997个核苷酸,包含了1个开放阅读框,编码1个509氨基酸的成熟蛋白和1个24氨基酸的信号肽。Cs a 1与其他昆虫nAChR a亚基之间有52%~94%的同源性,高于与脊椎动物nAChR a亚基之间的同源性。  相似文献   

3.
昆虫中枢DUM神经元受体和离子通道电生理学研究进展   总被引:1,自引:1,他引:0  
背侧不成对中间神经元(DUM)是一类位于多种昆虫腹神经索神经节背侧的神经元,能自发产生内源性超射动作电位。在DUM神经元细胞膜表达多种受体和离子通道,且电生理特性有别于哺乳动物中枢神经元膜上同种类型的受体和离子通道。目前已证实其细胞膜上表达K+通道、电压依赖的Na+通道、Ca2+敏感的Cl-通道、Ca2+通道、氯离子通道、乙酰胆碱受体、谷氨酸受体等多种离子通道和受体。近年来因膜片钳(patch-clamp)技术进展和对受体和离子通道研究的深入,该类神经细胞已用于杀虫剂选择性神经毒性研究和杀虫剂离体筛选。  相似文献   

4.
邱高辉  韩召军 《昆虫学报》2007,50(8):762-768
昆虫烟碱型乙酰胆碱受体(nicotinic acetylcholine receptor, nAChR)是杀虫剂的重要作用靶标之一。本研究利用简并引物PCR和半巢式PCR技术从麦长管蚜Sitobion avenae (Fabricius)中克隆nAChR基因,成功地获得了5个α型nAChR亚基的cDNA片段。根据5个α亚基片段设计特异引物,结合快速扩增cDNA末端(RACE)技术,成功克隆了5个α型亚基的全长,并发现α5亚基有两种存在形式,它们仅在胞外区有一段175 bp的片段有差异。序列分析发现,这些基因均具有nAChR基因家族的典型特征,并与已报道的其他昆虫的烟碱型乙酰胆碱受体的相应亚基具有很高的同源性。该研究为进一步利用基因表达技术研究昆虫nAChR的天然亚基组成,以及分析麦长管蚜对新烟碱类杀虫剂的靶标抗性,奠定了基础。  相似文献   

5.
新近研究证实,神经元烟碱型乙酰胆碱受体(nAChR)激动后可起到一定的神经保护作用.目前,一些作用于烟碱受体的激动剂已被作为治疗神经退行性疾病如阿尔茨海默病(AD)和帕金森病(PD)的候选药物,但是关于烟碱受体激动后如何发挥神经保护作用及其潜在的分子机制还不清楚,其中有与Ca2+相关的信号转导假说以及神经营养因子等假说.本文就烟碱型乙酰胆碱受体及其神经保护作用的研究进展予以综述.  相似文献   

6.
昆虫钠离子通道的研究进展   总被引:1,自引:0,他引:1  
昆虫只有一个或两个电压门控钠离子通道α亚基基因,但两种转录后修饰(选择性剪切和RNA编辑)实现了昆虫钠离子通道的功能多样性。昆虫β辅助亚基TipE和TEH1-4在钠离子通道表达和调控中也起着重要作用。电压门控钠离子通道在动作电位的产生和传递中至关重要,是多种天然和人工合成神经毒素及杀虫剂的作用靶标,包括广泛使用的拟除虫菊酯类、茚虫威和氰氟虫腙等杀虫剂。其中,拟除虫菊酯类杀虫剂通过调控昆虫钠离子通道的失活和去激活,延长跨膜钠离子流的时间,引起神经兴奋性传导障碍;茚虫威和氰氟虫腙阻断昆虫中枢和外周神经系统神经元的动作电位传导,这些神经毒剂都能干扰昆虫钠离子通道的正常功能。昆虫钠离子通道一般存在两个拟除虫菊酯类杀虫剂结合位点,但不同物种钠离子通道与拟除虫菊酯的结合位点存在一定差异。据此,本文就昆虫钠离子通道及其与杀虫剂的相互作用加以综述,有望推动昆虫神经受体研究,且对鉴定昆虫抗药性相关突变位点和研发高效的杀虫剂均具有重要参考价值。  相似文献   

7.
害虫的抗药性:Ⅶ.昆虫对拟除虫菊酯抗性机理   总被引:1,自引:0,他引:1  
<正> 合成的拟除虫菊酯类杀虫剂是近年来新发展的高效低残毒杀虫剂,它们对哺乳动物和昆虫的选择毒性要比有机磷、氨基甲酸醋类杀虫剂高出二个数量级,可以说是化学防治中崛起的新星。在70年代初,拟除虫菊酯作为商品问世之初,人们曾根据昆虫似乎对天然除虫菊酯抗性发展较慢的情况预测到昆虫也许不易对  相似文献   

8.
新烟碱类农药是一类广泛应用于农田生态系统的内吸型杀虫剂,具有杀虫广谱、持效期长和作用机制独特等特点。作为激动剂,它们选择性作用于昆虫烟碱型乙酰胆碱酯受体(nAChRs)。以往普遍认为,新烟碱类杀虫剂仅对靶标性昆虫杀灭性强,对鸟类等非靶标性生物毒性较低。但最近越来越多的研究表明,新烟碱类杀虫剂的暴露会对非靶标性鸟类造成负面影响。本文综述了新烟碱类杀虫剂的检测方法及其对鸟类的影响。国外较多的研究关注新烟碱类杀虫剂对鸟类种群数量、繁殖生态和迁徙能力的影响,但国内研究很少关注此类问题。针对我国现有研究的不足,提出了今后关于新烟碱类杀虫剂对鸟类影响研究方向,以期为科学评估新烟碱类杀虫剂对鸟类的暴露风险提供依据。  相似文献   

9.
昆虫钠通道的结构和与击倒抗性有关的基因突变   总被引:13,自引:3,他引:10  
击倒抗性(kdr)是指昆虫和其他节肢动物由于它们的神经系统对DDT和拟除虫菊酯类杀虫剂的敏感性降低而引起的抗性。电压敏感的钠通道是DDT和拟除虫菊酯类杀虫剂的主要靶标。已知拟除虫菊酯是通过改变位于神经膜上的这类通道而发挥其杀虫效果的,钠通道基因的点突变是产生kdr抗性的主要原因。40年来kdr抗性一直是重要的研究课题,但近10年来在kdr分子生物学方面取得了很大进展。本文主要综述了1996年以来所取得的新进展,着重于钠通道的结构、在14种害虫中与kdr抗性相关的钠通道基因突变及其氨基酸序列的多态性。这些结果有助于对拟除虫菊酯改变钠通道的功能及其机理作进一步探究。  相似文献   

10.
吡虫啉对意大利蜜蜂脑乙酰胆碱受体分布的影响   总被引:1,自引:0,他引:1  
周婷  宋怀磊  王强  代平礼  吴艳艳  孙继虎 《昆虫学报》2013,56(11):1258-1266
蜜蜂是自然界主要的授粉昆虫; 新烟碱类杀虫剂(neonicotinoid insecticide)通过结合害虫体内乙酰胆碱受体(nAChR)使害虫致死, 是目前广泛用于田间害虫防控的杀虫剂。本研究以意大利蜜蜂Apis mellifera ligustica和新烟碱类杀虫剂的代表品种吡虫啉为材料, 应用免疫组织化学的方法, 研究了正常成年蜜蜂脑内蘑菇体及视叶nAChR-α7的表达和分布; 分析了亚致死剂量新烟碱类杀虫剂吡虫啉对nAChR-α7表达和分布的影响。结果表明, nAChR-α7在正常蜜蜂脑蘑菇体和视叶中均可检测到, 在蘑菇体中分布相对较少, 但在视叶分布丰富。吡虫啉对nAChR-α7在视叶的表达和分布有显著抑制作用, 但对蘑菇体nAChR-α7的表达没有显著影响。结果提示, 新烟碱类杀虫剂吡虫啉除了文献报道的抑制nAChR的表达外, 还能抑制nAChR-α7的表达量, 这是新烟碱类杀虫剂作用机制的新发现。  相似文献   

11.
The seco-prezizaane-type sesquiterpenes pseudoanisatin and parviflorolide from Illicium are noncompetitive antagonists at housefly (Musca domestica) gamma-aminobutyric acid (GABA) receptors. They show selectivity toward the insect receptor and thus represent new leads toward selective insecticides. Based on the binding data for 13 seco-prezizaane terpenoids and 17 picrotoxane and picrodendrane-type terpenoids to housefly and rat GABA receptors, a QSAR study was conducted by quasi-atomistic receptor-surface modeling (Quasar). The resulting models provide insight into the structural basis of selectivity and properties of the binding sites at GABA receptor-coupled chloride channels of insects and mammals.  相似文献   

12.
Nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in both vertebrates and invertebrates. In insects, nAChRs are the target site for several naturally occurring and synthetic compounds that exhibit potent insecticidal activity. Several compounds isolated from plants are potent agonists or antagonists of nAChRs, suggesting that these may have evolved as a defence mechanism against insects and other herbivores. Nicotine, isolated from the tobacco plant, has insecticidal activity and has been used extensively as a commercial insecticide. Spinosad, a naturally occurring mixture of two macrocyclic lactones isolated from the microorganism Saccharopolyspora spinosa, acts upon nAChRs and has been developed as a commercial insecticide. Since the early 1990s, one of the most widely used and rapidly growing classes of insecticides has been the neonicotinoids. Neonicotinoid insecticides are potent selective agonists of insect nAChRs and are used extensively in both crop protection and animal health applications. As with other classes of insecticides, there is growing evidence for the evolution of resistance to insecticides that act on nAChRs.  相似文献   

13.
Chloride channels as tools for developing selective insecticides   总被引:8,自引:0,他引:8  
Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for insecticide development.  相似文献   

14.
The function of chloride (Cl-) channel proteins is to regulate the transport of Cl- across membranes. There are two major kinds of Cl- channels: 1) those activated by binding of a transmitter such as gamma-aminobutyric acid (GABA), glycine, or glutamate, and thus are receptors; and 2) those activated by membrane depolarization or by calcium. There are two kinds of GABA receptors: GABAA is the major inhibitory receptor of vertebrate brain and the one that operates a Cl- channel, and the GABAB receptor, which is proposed to regulate cAMP production that is stimulated by other receptors. Except for binding of GABA, these two GABA receptors differ completely in their drug specificities. However, there are many similarities among the GABAA receptor, the glycine receptor, and the voltage-dependent Cl- channel. The two receptors and Cl- channels bind avermectin, whereas bicuculline binds only to mammalian GABAA and glycine receptors, not to the insect brain GABAA receptor. Barbiturates bind to GABAA and voltage-dependent Cl- channels, possibly directly activating them. Benzodiazepines potentiate both the glycine and GABAA receptors. Several insecticides act on the GABAA receptor and voltage-dependent Cl- channel. It is suggested that the GABAA receptor is the primary target for the action of toxaphene and cyclodiene insecticides but a secondary target for lindane and type II pyrethroids. On the other hand, the Cl- channel may be a primary target for avermectin and lindane but a secondary one for cyclodienes. The similarity in certain drug specificities and the operation of Cl- channels suggest a degree of homology between the subunits of GABAA and glycine receptors and the voltage-dependent Cl- channels.  相似文献   

15.
In the assay of glutamate and gamma-aminobutyric acid (GABA) with a high-performance liquid chromatography, spontaneous release of glutamate and GABA from rat hippocampal slices was significantly enhanced by mecamylamine, an inhibitor of non-alpha7 ACh receptors, or alpha-bungarotoxin, an inhibitor of alpha7 ACh receptors in the absence of tetrodotoxin (TTX), but not in the presence of TTX. Nicotine significantly enhanced glutamate and GABA release in the absence of TTX, that is abolished by mecamylamine or alpha-bungarotoxin, while it had no effect on the release in the presence of TTX. In the recording of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (AMPA-EPSCs) and GABA(A) receptor-mediated inhibitory postsynaptic currents (GABA(A)-IPSCs) from CA1 pyramidal neurons of rat hippocampal slices, nicotine did not affect the rate and amplitude of AMPA-EPSCs and AMPA-miniature EPSCs. In contrast, nicotine significantly increased the rate of GABA(A)-IPSCs, without affecting the amplitude, but such effect was not obtained with GABA(A)-miniature IPSCs. The collective results suggest that alpha7 and non-alpha7 ACh receptors expressed in the hippocampus, activated under the basal conditions, inhibit release of glutamate and GABA controlled through multi-synaptic relays, but that otherwise, those receptors, highly activated by nicotine, stimulate both the release, with a part of GABA released from interneurons transmitting to CA1 pyramidal neurons. Furthermore, the results also suggest that alpha7 and non-alpha7 ACh receptors do not have potency sufficiently to modulate glutamate and GABA release controlled by single synapses.  相似文献   

16.
Ligand-gated chloride channels mediate a variety of functions in excitable membranes of nerve and muscle in insects, and have a long history as targets for neurotoxic insecticides. Recent findings from our laboratory confirm that the natural product silphinenes and their semi-synthetic analogs share a mode of action with the established ligand-gated chloride channel antagonist, picrotoxinin. The silphinenes are non-selective, being roughly equipotent on insect and mammalian receptors, but also possess lethal and neurotoxic effects on a dieldrin-resistant strain of Drosophila melanogaster. These findings suggest that silphinenes act on insect GABA receptors in a way that is different from picrotoxinin, and it is possible that resistant insect populations in the field could be controlled with insecticidal compounds derived from the silphinenes. Voltage-gated chloride channels and anion transporters provide additional classes of validated targets for insecticidal/nematicidal action. Anion transporter blockers are toxic to insects via an action on the gut, and RNAi studies implicate voltage-gated chloride channels in nematode muscle as another possible target. There was no cross resistance to DIDS in a dieldrin-resistant strain of Drosophila melanogaster, and no evidence for neurotoxicity. The potent paralytic actions of anion transporter blockers against nematodes, and stomach poisoning activity against lepidopteran larvae suggests they are worthy of further investigation as commercial insecticidal/nematicidal agents.  相似文献   

17.
Stein V  Nicoll RA 《Neuron》2003,37(3):375-378
In the CNS, gamma-aminobutyric acid (GABA) acts as an inhibitory transmitter via ligand-gated GABA(A) receptor channels and G protein-coupled GABA(B) receptors. Both of these receptor types mediate inhibitory postsynaptic transmission throughout the nervous system. For GABA(A) receptors, this inhibitory action is associated with a hyperpolarization due to an increase in conductance to chloride ions. Previous studies show that GABA(A) receptor activation in neonatal neurons and spinal cord neurons can be excitatory. Two papers recently appeared that clearly demonstrate that GABA can have a depolarizing and excitatory action in mature cortical neurons. Here we discuss the evolving story on chloride ion homeostasis in CNS neurons and its role in the bipolar life of the GABA(A) receptor.  相似文献   

18.
A GABA-operated Cl channel that is bicuculline-insensitive is abundant in the nervous tissue of cockroach, in housefly head preparations and thorax/abdomen preparations, and in similar preparations from several insect species. Bicuculline-insensitive GABA-operated Cl channels, which are rare in vertebrates, possess sites of action of benzodiazepines, steroids and insecticides that are pharmacologically-distinct from corresponding sites on vertebrate GABAA receptors. The pharmacological profile of the benzodiazepine-binding site linked to an insect CNS GABA-operated Cl channel resembles more closely that of vertebrate peripheral benzodiazepine-binding sites. Six pregnane steroids and certain polychlorocycloalkane insecticides, which are active att-butylbicy-clophosphorothionate (TBPS)-binding sites, also differ in their effectiveness on vertebrate and insect GABA receptors. Radioligand binding and physiological studies indicate that in insects there may be subtypes of the GABA receptor. Molecular biology offers experimental approaches to understanding the basis of this diversity.Special issue dedicated to Dr. Eugene Roberts  相似文献   

19.
It has been shown that nondepolarizing muscle relaxants may have effects on nicotinic acetylcholine receptors (nAChRs) other than those located on the skeletal muscle: some of them possess inhibitory effects on neuronal nAChRs [Anesth. Analg. 59 (1980) 935; Trends Pharmacol. Sci. 9 (1988) 16; Pharmacol. Ther. 73 (1997) 75]. It was shown that, e.g. (+)-tubocurarine and pancuronium are able to inhibit ACh release from the axon terminals of hemidiaphragm preparations and produce tetanic fade indicating their presynaptic effect. In this study rocuronium, a nondepolarizing steroidal muscle relaxant with shorter onset of action, and SZ1677 [1-(3-hydroxy-17β-acetyloxy)-2β-(1.4-dioxa-8-azaspiro-[4,5]-dec-8-yl)-(5-androstane-16β-yl)-1-(2-propenyl) pyrrolidinium bromide], a short-acting muscle relaxant [Ann. New York Acad. Sci. 757 (1995b) 84] inhibited the release of ACh in response to axonal stimulation, while -bungarotoxin failed to reduce the stimulation evoked release of ACh and did not produce tetanic fade. These results indicate that in addition to their postsynaptic effect, rocuronium and SZ1677 have presynaptic inhibitory effects on neuronal nAChRs at the neuromuscular junction. The finding that -bungarotoxin does not inhibit the release and does not produce tetanic fade indicates that it possesses affinity only for the postsynaptic muscle nAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号