首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
抗冻糖蛋白溶液中冰晶生长速率的研究   总被引:3,自引:0,他引:3  
在分析了溶液中抗冻糖蛋白与冰晶表面的相互作用的基础上,提出了在抗冻糖蛋白溶液中冰晶沿c轴方向生长的理论。给出了冰晶在抗冻糖蛋白溶液中生长速率的定量计算,而且理论值与实验结果有较好的符合,解释了冰晶在抗冻糖蛋白溶液中生长速度和生长习性的各向异性。  相似文献   

2.
凝胶介质可以排除或削弱晶体生长过程中重力引起的对流和沉淀现象,用凝胶法生长生物大分子晶体是一种新的探索。使用类似于悬滴汽相扩散的方法,凝胶中生长出单个较大的外形发育完善且高度对称的鸡蛋清溶菌酶晶体。MPD在凝胶中对溶菌酶结晶与溶液中具有相似的抑核作用。排循照像实验表明,凝胶法生长的晶体具有较强的衍射能力。  相似文献   

3.
以预制的ZnO晶种层为基底,采用化学溶液生长法,在不同生长液浓度(Zn2+)条件下生长ZnO纳米棒,对制备得到的ZnO纳米棒的结构和微观形貌进行XRD和SEM表征,分析水浴生长法的生长液浓度(Zn2+)对ZnO纳米棒的影响机理,发现在生长液浓度(Zn2+)为0.05mol·L-1时生长得到的ZnO纳米阵列空间取向最优。  相似文献   

4.
植物根系和叶片生长对水分亏缺的原始反应   总被引:1,自引:0,他引:1  
细胞扩张生长是植物受水分亏缺影响最敏感的生理过程之一,主要在对细胞水分导性、细胞壁特性和延伸组织中溶质传输结果分析的基础上,从细胞、组织和器官水平上对细胞扩展生长进行了探讨。根系和叶片细胞主要通过以下2个过程来补偿水分胁迫的作用。调节扩展生长需要的细胞临界膨压;溶质在延伸组织中的运移,此外,还探讨了植物根系和叶片生长对水分亏缺的生理适应机制。  相似文献   

5.
植物根系和叶片生长对水分亏缺的原初反应   总被引:14,自引:0,他引:14  
细胞扩张生长是植物受水分亏缺影响最敏感的生理过程之一。主要在对细胞水分导性、细胞壁特性和延伸组织中溶质传输结果分析的基础上 ,从细胞、组织和器官水平上对细胞扩展生长进行了探讨。根系和叶片细胞主要通过以下 2个过程来补偿水分胁迫的作用 :调节扩展生长需要的细胞临界膨压 ;溶质在延伸组织中的运移。此外 ,还探讨了植物根系和叶片生长对水分亏缺的生理适应机制  相似文献   

6.
刘兴坦 《生物技术》2002,12(2):25-26
初步探讨了磺胺对小麦种子萌发与幼苗生长的影响。研究表明,用低浓度(<6.0mg/L)的磺胺溶液浸泡小麦种子,能显著增加幼苗的根重,根长和根冠比,提高根系活力和叶片叶绿素的含量,降低幼苗的苗高,苗重,但对发芽率影响不大。高浓度(>10.0mg/L)和安则强烈抑制小麦幼苗根,芽的生长,并导致幼苗形态的不良变化。  相似文献   

7.
游隆信 《生物学通报》2005,40(12):32-32
1概念的内涵 高中生物学教材中对渗透作用的定义是:水分子(或其他溶剂分子)透过半透膜,从低浓度溶液向高浓度溶液的扩散,叫做渗透作用(着重号为概念的精髓)。渗透作用的产生必须具备两个基本条件:①具有半透膜;②半透膜两侧溶液具有浓度差。对上述概念和条件应注意如下两个问题:一是在“扩散”前用“低浓度溶液向高浓度溶液”加以修饰,学生常常会把溶液浓度作为判断是否发生渗透作用的标准,即如果两种溶液之间没有浓度差就不会发生渗透作用。事实上浓度相同而溶质不同的两种溶液也能发生渗透作用;二是教材只在植物的水分代谢中叙述了渗透作用,学生往往认为只有成熟的植物细胞才能发生渗透作用,其实包括动物细胞、植物细胞、细菌细胞等在内的活体生物细胞都具有渗透作用。  相似文献   

8.
谷氨酸对苏云金杆菌的芽孢和伴孢晶体的影响   总被引:2,自引:0,他引:2  
研究了不同浓度的谷氨酸对苏云金芽孢杆菌形态、菌体浓度及芽孢和件孢晶体的影响.研究表明,一定浓度的谷氨酸有利于菌体的生长并能够提高菌体的增殖速度,对芽孢和伴孢晶体的形态没有明显的影响,但对芽孢的裂解有明显地抑制作用.  相似文献   

9.
综述了杂质对蛋白质晶体生长影响研究领域的进展情况. 对可能的杂质来源以及杂质对结晶过程的影响进行了介绍.重点介绍了和结晶蛋白质分子结构相似的杂质分子的影响, 包括晶体成核、生长形态、表面形貌、生长动力学、质量等,以及杂质在晶体中的重新分配.  相似文献   

10.
利用粒数密度和粒度之间的关系判别晶体生长模型;采用间歇动态法,以粒数衡算方程、溶质质量守恒和McCabe定律为基础,利用Beer-Lambert定律,借助光学关联的方法,建立了包含透光率变量的伴有成核和晶体生长的动力学模型;通过在线测量溶液密度与透光率数据,采用非线性最小二乘法拟合得到了晶体成核和生长动力学经验方程,并以实时浓度为目标验证了动力学参数的准确性以及模型表达式的正确性。  相似文献   

11.
Calcium oxalate crystals are a major biomineralization product in higher plants. Their biological function and use are not well understood. In this work, we focus on the isolation and crystallochemical characterization of calcium oxalate crystals from seed coats of Phaseolus vulgaris (prisms) and leaves of Vitis vinifera (raphides and druses) using ultrastructural methods. A proposal based on crystal growth theory was used for explaining the existence of different morphologies shown by these crystals grown inside specialized cells in plants.  相似文献   

12.
Plomp M  McPherson A  Malkin AJ 《Proteins》2003,50(3):486-495
The surface morphology of Bence-Jones protein (BJP) crystals was investigated during growth and dissolution by using in situ atomic force microscopy (AFM). It was shown that over a wide supersaturation range, impurities adsorb on the crystalline surface and ultimately form an impurity adsorption layer that prevents further growth of the crystal. At low undersaturations, this impurity adsorption layer prevents dissolution. At greater undersaturation, dissolution takes place around large particles incorporated into the crystal, leading to etch pits with impurity-free bottoms. On restoration of supersaturation conditions, two-dimensional nucleation takes place on the impurity-free bottoms of these etch pits. After new growth layers fill in the etch pits, they cover the impurity-poisoned top layer of the crystal face. This leads to the resumption of its growth. Formation of an impurity-adsorption layer can explain the termination of growth of macromolecular crystals that has been widely noted. Growth-dissolution-growth cycles could be used to produce larger crystals that otherwise would have stopped growing because of impurity poisoning.  相似文献   

13.
用汽相扩散法生长溶菌酶晶体并利用CCD显微摄像系统记录了溶菌酶晶体的生长过程。由此图象序列,我们可以计算晶体的最大线度、生长速度,估计溶菌酶分子层的增长速度,了解蛋白质晶体在结晶室内的分布及其形态变化。得到结果如下:蛋白晶体生长初期最大线度与时间近似成线性关系;各晶面生长速度基本相等。  相似文献   

14.
Two dimensional crystals of streptavidin grown on lipid monolayers can be viewed as model systems for the study of phase transitions and morphology. These crystals form a variety of macroscopic morphologies associated with different microscopic crystal structures. Observed morphologies are similar to those found in two-dimensional lipid systems, and growth of the protein arrays is somewhat analogous. Such solid state physical processes as nucleation, transformation between crystal phases, crystal phase coexistence, and roughening have been observed in the streptavidin system. In this review, we highlight observations that cause streptavidin to remain an interesting model system exhibiting a variety of intriguing phenomena.  相似文献   

15.
A study of developing transmitting tissue of Lilium Leucanthum pistils was undertaken in order to correlate structure with function. Lining the stylar canal are stigmatoid cells which contain a secretory zone consisting of a labyrinth of wall ingrowths characteristic of transfer cells. The functional feature of the labyrinth is a high surface-to-volume ratio that facilitates an intensive transmembrane flux of solutes. Stigmatoid cells in various stages of development and maturation have been investigated with the aid of electron and light optics in conjunction with cytochemical techniques. During development of the secretory zone, vesicles, formed by hypersecretory dictyosomes, fuse with the plasma membrane and contribute their contents to the growing wall. The pattern of secretory zone development is basipetal and is associated with initiation of chemotropism. In a mature pistil large crystals, having a basipetal pattern of development, and sensitive to protease, can be observed in the cytoplasm of stigmatoid cells. At anathesis, degradation of the crystal can be observed in the cells of the stigma surface and progresses basipetally as the pistil ages. The role of the crystal is uncertain. Immature pistils cultured in the presence of labeled proline take up the label which at maturity of the pistil is transferred to the canal of the pistil. The label is found in the crystals and the secretory zone of the stigmatoid cells. Pollen tubes growing in the canal of a labeled pistil take up the label.  相似文献   

16.
To start systematically investigating the quality improvement of protein crystals, the elementary growth processes of protein crystals must be first clarified comprehensively. Atomic force microscopy (AFM) has made a tremendous contribution toward elucidating the elementary growth processes of protein crystals and has confirmed that protein crystals grow layer by layer utilizing kinks on steps, as in the case of inorganic and low-molecular-weight compound crystals. However, the scanning of the AFM cantilever greatly disturbs the concentration distribution and solution flow in the vicinity of growing protein crystals. AFM also cannot visualize the dynamic behavior of mobile solute and impurity molecules on protein crystal surfaces. To compensate for these disadvantages of AFM, in situ observation by two types of advanced optical microscopy has been recently performed. To observe the elementary steps of protein crystals noninvasively, laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM) was developed. To visualize individual mobile protein molecules, total internal reflection fluorescent (TIRF) microscopy, which is widely used in the field of biological physics, was applied to the visualization of protein crystal surfaces. In this review, recent progress in the noninvasive in situ observation of elementary steps and individual mobile protein molecules on protein crystal surfaces is outlined.  相似文献   

17.
Helical fibers, presumably proteinaceous and of microbial origin, have been visualized by atomic force microscopy on the surfaces of crystals of satellite tobacco mosaic virus. If the crystals are growing, then the fibers are incorporated intact into the crystal lattice. If broken on the crystal surface, then within a few minutes, the fibers self-reassemble to reestablish continuity. This, we believe, is the first observation of such a crystal surface-catalyzed repair of a biological structure. The surfaces of virus crystals provide ideal workbenches for the visualization and manipulation of nanoscale objects, particularly extended structures such as these fibers.  相似文献   

18.
An apparatus is described for observing protein crystals growing under varying growth conditions, and for changing or manipulating crystal orientation for viewing selected faces or growth modes. This flexibility permits a wide variety of protein crystal growth experiments to be performed using the same crystal(s).  相似文献   

19.
Details of crystal growth in the calcitostracum of Crassostrea virginica have been studied with the purpose of analyzing the formation of the overlapping rows of oriented tabular crystals characteristic of this part of the shell. Crystal elongation, orientation, and dendritic growth suggest the presence of strong concentration gradients in a thin layer of solution in which crystallization occurs. Formation of the overlapping rows can be explained by three processes observed in the shell: a two-dimensional tree-like dendritic growth in which one set of crystal branchings creeps over an adjacent set of branchings; three-dimensional dendritic growth; and growth by dislocation of crystal surfaces. Multilayers of crystals may thus be formed at one time. This is favored by infrequent secretion of a covering organic matrix which would inhibit crystal growth. The transitional zone covering the outer part of the calcitostracum and the inner part of the prismatic region is generally characterized by aggregates of small crystals with definite orientation. Growth in this zone appears to take place in a relatively homogeneous state of solution without strong concentration gradients. Thin membranes and bands of organic matrix were commonly observed in the transitional zone bordering the prismatic region. The membrane showed a very fine oriented network pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号