首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Persistence of infectious HIV on follicular dendritic cells   总被引:11,自引:0,他引:11  
Follicular dendritic cells (FDCs) trap Ags and retain them in their native state for many months. Shortly after infection, HIV particles are trapped on FDCs and can be observed until the follicular network is destroyed. We sought to determine whether FDCs could maintain trapped virus in an infectious state for long periods of time. Because virus replication would replenish the HIV reservoir and thus falsely prolong recovery of infectious virus, we used a nonpermissive murine model to examine maintenance of HIV infectivity in vivo. We also examined human FDCs in vitro to determine whether they could maintain HIV infectivity. FDC-trapped virus remained infectious in vivo at all time points examined over a 9-mo period. Remarkably, as few as 100 FDCs were sufficient to transmit infection throughout the 9-mo period. Human FDCs maintained HIV infectivity for at least 25 days in vitro, whereas virus without FDCs lost infectivity after only a few days. These data indicate that HIV retained on FDCs can be long lived even in the absence of viral replication and suggest that FDCs stabilize and protect HIV, thus providing a long-term reservoir of infectious virus. These trapped stores of HIV may be replenished with replicating virus that persists even under highly active antiretroviral therapy and would likely be capable of causing infection on cessation of drug therapy.  相似文献   

3.
Follicular dendritic cells (FDCs) represent a major reservoir of HIV, and active infection occurs surrounding these cells, suggesting that this microenvironment is highly conducive to virus transmission. Because CD4 T cells around FDCs in germinal centers express the HIV coreceptor, CXCR4, whereas CD4 lymphocytes in many other sites do not, it prompted the hypothesis that FDCs may increase CXCR4 expression on CD4 T cells, thereby facilitating infection. To test this, HIV receptor/coreceptor expression was determined on CD4 T cells cultured with or without FDCs, and its consequence to infection was assessed by measuring virus binding and entry. FDCs had little effect on CCR5 or CD4 expression but increased CXCR4 expression on CD4 T cells. FDC-mediated up-regulation of CXCR4 on CD4 T cells occurred by 24 h and was sustained for at least 96 h in vitro, and FDC-CD4 T cell contact was necessary. Importantly, increased CXCR4 expression directly correlated with increased binding and entry of HIV-1 X4 isolates. Furthermore, CD4(+)CD57(+) germinal center T cells expressed high levels of CXCR4 and supported enhanced entry of X4 HIV compared with other CD4 T cells from the same tissue. Thus, in addition to serving as a reservoir of infectious virus, FDCs render surrounding germinal center T cells highly susceptible to infection with X4 isolates of HIV-1.  相似文献   

4.
Fcgamma receptor (FcgammaR)-mediated entry of infectious dengue virus immune complexes into monocytes/macrophages is hypothesized to be a key event in the pathogenesis of complicated dengue fever. FcgammaRIA (CD64) and FcgammaRIIA (CD32), which predominate on the surface of such dengue virus-permissive cells, were compared for their influence on the infectivity of dengue 2 virus immune complexes formed with human dengue virus antibodies. A signaling immunoreceptor tyrosine-based activation motif (ITAM) incorporated into the accessory gamma-chain subunit that associates with FcgammaRIA and constitutively in FcgammaRIIA is required for phagocytosis mediated by these receptors. To determine whether FcgammaRIA and FcgammaRIIA activation functions are also required for internalization of infectious dengue virus immune complexes, we generated native and signaling-incompetent versions of each receptor by site-directed mutagenesis of ITAM tyrosine residues. Plasmids designed to express these receptors were transfected into COS-7 cells, and dengue virus replication was measured by plaque assay and flow cytometry. We found that both receptors mediated enhanced dengue virus immune complex infectivity but that FcgammaRIIA appeared to do so far more effectively. Abrogation of FcgammaRIA signaling competency, either by expression without gamma-chain or by coexpression with gamma-chain mutants, was associated with significant impairment of phagocytosis and of dengue virus immune complex infectivity. Abrogation of FcgammaRIIA signaling competency was also associated with equally impaired phagocytosis but had no discernible effect on dengue virus immune complex infectivity. These findings point to fundamental differences between FcgammaRIA and FcgammaRIIA with respect to their immune-enhancing capabilities and suggest that different mechanisms of dengue virus immune complex internalization may operate between these FcgammaRs.  相似文献   

5.
The close association of follicular dendritic cells (FDCs) and germinal-centre B cells has fostered the idea that B-cell recognition of retained antigen that is presented on the surface of FDCs is important for affinity maturation and memory B-cell development. We argue that the retention of immune complexes is not required for germinal-centre development, affinity maturation and memory B-cell maintenance. Instead, it is probable that FDCs support B-cell proliferation and differentiation in a non-specific manner. Other potential roles of immune complexes retained by FDCs are discussed.  相似文献   

6.
Induction of anti-HIV neutralizing antibodies by synthetic peptides.   总被引:47,自引:0,他引:47       下载免费PDF全文
Two synthetic peptides containing amino acid sequences analogous to the envelope glycoprotein of human T-lymphotropic virus (HTLV) type III (HTLV-III) and lymphadenopathy associated virus (LAV) were produced and used to immunize rabbits. The subsequent rabbit antisera neutralized HTLV-III infectivity in vitro. The two synthetic peptides corresponded to regions associated with the gp120 or gp41 subunits respectively, of human immunodeficiency virus (HIV). This data indicates that at least two neutralizing epitopes are present on the envelope glycoprotein of HIV and these epitopes are associated with two distinct virus envelope glycoproteins. Antisera generated against these peptides neutralized infectivity of two different isolates of HTLV-III. The data is discussed in terms of possible strategy for developing an effective vaccine against the etiologic agents of acquired immune deficiency syndrome (AIDS).  相似文献   

7.
Throughout the natural course of human immunodeficiency virus (HIV) infection, follicular dendritic cells (FDCs) trap and retain large quantities of particle-associated HIV RNA in the follicles of secondary lymphoid tissue. We have previously found that murine FDCs in vivo could maintain trapped virus particles in an infectious state for at least 9 months. Here we sought to determine whether human FDCs serve as an HIV reservoir, based on the criteria that virus therein must be replication competent, genetically diverse, and archival in nature. We tested our hypothesis using postmortem cells and tissues obtained from three HIV-infected subjects and antemortem blood samples obtained from one of these subjects. Replication competence was determined using coculture, while genetic diversity and the archival nature of virus were established using phylogenetic and population genetics methods. We found that FDC-trapped virus was replication competent and demonstrated greater genetic diversity than that of virus found in most other tissues and cells. Antiretrovirus-resistant variants that were not present elsewhere were also detected on FDCs. Furthermore, genetic similarity was observed between FDC-trapped HIV and viral species recovered from peripheral blood mononuclear cells obtained 21 and 22 months antemortem, but was not present in samples obtained 4 and 18 months prior to the patient's death, indicating that FDCs can archive HIV. These data indicate that FDCs represent a significant reservoir of infectious and diverse HIV, thereby providing a mechanism for viral persistence for months to years.  相似文献   

8.
We have investigated the effects of Nef on infectivity in the context of various viral envelope proteins. These experiments were performed with a minimal vector system where Nef is the only accessory protein present. Our results support the hypothesis that the route of entry influences the ability of Nef to enhance human immunodeficiency virus (HIV) infectivity. We show that HIV particles pseudotyped with Ebola virus glycoprotein or vesicular stomatitis virus glycoprotein (VSV-G), which fuse at low pH, do not require Nef for optimal infectivity. In contrast, Nef significantly enhances the infectivity of virus particles that contain envelope proteins that fuse at neutral pH (CCR5-dependent HIV Env, CXCR4-dependent HIV Env, or amphotropic murine leukemia virus Env). In addition, our results demonstrate that virus particles containing mixed CXCR4-dependent HIV and VSV-G envelope proteins show a conditional requirement for Nef for optimal infectivity, depending on which protein is allowed to facilitate entry.  相似文献   

9.
Generation of the B cell recall response appears to involve interaction of Ag, in the form of an immune complex (IC) trapped on follicular dendritic cells (FDCs), with germinal center (GC) B cells. Thus, the expression of receptors on FDC and B cells that interact with ICs could be critical to the induction of an optimal recall response. FDCs in GCs, but not in primary follicles, express high levels of the IgG Fc receptor Fc gamma RIIB. This regulated expression of Fc gamma RIIB on FDC and its relation to recall Ab responses were examined both in vitro and in vivo. Trapping of IC in spleen and lymph nodes of Fc gamma RII-/- mice was significantly reduced compared with that in wild-type controls. Addition of ICs to cultures of Ag-specific T and B cells elicited pronounced Ab responses only in the presence of FDCs. However, FDCs derived from Fc gamma RIIB-/- mice supported only low level Ab production in this situation. Similarly, when Fc gamma RIIB-/- mice were transplanted with wild-type Ag-specific T and B cells and challenged with specific Ag, the recall responses were significantly depressed compared with those of controls with wild-type FDC. These results substantiate the hypothesis that FcgammaRIIB expression on FDCs in GCs is important for FDCs to retain ICs and to mediate the conversion of ICs to a highly immunogenic form and for the generation of strong recall responses.  相似文献   

10.
Mice immunized with IgE/Ag complexes produce significantly more Ag-specific Abs than mice immunized with Ag alone. The enhancement is mediated via the low-affinity receptor for IgE (FcepsilonRII or CD23), as shown by its complete absence in mice pretreated with mAbs specific for CD23 and in CD23-deficient mice. Because the constitutive expression of murine CD23 is limited to B cells and follicular dendritic cells (FDCs), one of these cell types is likely to be involved. One of the suggested modes of action of IgE/CD23 is to increase the ability of B cells to present Ag to T cells, as demonstrated to take place in vitro. Another possibility is that FDCs capture the IgE/Ag complexes and present these directly to B cells. The purpose of the present study was to determine whether CD23+ B cells or FDCs are responsible for the IgE/CD23-mediated enhancement of specific Ab responses in vivo. We show that the enhancement is completely restored in irradiated CD23-deficient mice reconstituted with CD23+ spleen or bone marrow cells. In these mice, the B cells are CD23+ and the FDCs are presumably CD23- because the FDCs are radiation resistant and are reported not to be replaced by donor cells after this type of cell transfer. In contrast, enhancement was not restored in irradiated wild-type mice reconstituted with CD23- cells. These results indicate that CD23+ B cells, and not FDCs, are the cells that capture IgE/Ag complexes and induce enhancement of Ab responses in vivo.  相似文献   

11.
The necessity for pathogen recognition of viral infection by the innate immune system in initiating early innate and adaptive host defenses is well documented. However, little is known about the role these receptors play in the maintenance of adaptive immune responses and their contribution to resolution of persistent viral infections. In this study, we demonstrate a nonredundant functional requirement for both nucleic acid-sensing TLRs and RIG-I-like receptors in the control of a mouse model of chronic viral infection. Whereas the RIG-I-like receptor pathway was important for production of type I IFNs and optimal CD8(+) T cell responses, nucleic acid-sensing TLRs were largely dispensable. In contrast, optimal anti-viral Ab responses required intact signaling through nucleic acid-sensing TLRs, and the absence of this pathway correlated with less virus-specific Ab and deficient long-term virus control of a chronic infection. Surprisingly, absence of the TLR pathway had only modest effects on Ab production in an acute infection with a closely related virus strain, suggesting that persistent TLR stimulation may be necessary for optimal Ab responses in a chronic infection. These results indicate that innate virus recognition pathways may play critical roles in the outcome of chronic viral infections through distinct mechanisms.  相似文献   

12.
We reasoned that immune complex (IC)-bearing follicular dendritic cells (FDCs) promote somatic hypermutation (SHM). This hypothesis was tested in murine germinal center reactions induced in vitro by coculturing 6-day (4-hydroxy-3-nitrophenyl) acetyl-primed but unmutated lambda+ B cells, chicken gamma-globulin (CGG) memory T cells, FDCs, and ICs (anti-CGG plus NP-CGG). Mutations in primed lambda+ B cells were obtained only when both FDCs and immunogen were present. FDCs alone promoted B cell survival and Ab production but there were no mutations without more immunogen. Moreover, the mutation rate was enhanced when FDCs were activated. Trapped ICs ranged from 200 to 500 A apart on FDC membranes and this correlated with the periodicity known to optimally signal BCRs. FDCs are unique in their ability to retain ICs for months and a second signal mediated by FDC-ICs appeared to be needed a week or more after immunization by immunogen persisting on FDCs. However, the time needed to detect extensive SHM could be reduced to 7 days if ICs were injected together with memory T cells in vivo. In marked contrast, no mutations were apparent after 7 days in vivo if ICs were replaced by free Ag that would not load on FDCs until Ab was produced. The data suggest that specific Ab production leads to the following events: Ab encounters Ag and ICs are formed, ICs are trapped by FDCs, B cells are stimulated by periodically arranged Ag in ICs on FDCs, and this late antigenic signal promotes SHM.  相似文献   

13.
Follicular dendritic cells (FDCs) increase HIV replication and virus production in lymphocytes by increasing the activation of NF-κB in infected cells. Because α-1-antitrypsin (AAT) decreases HIV replication in PBMCs and monocytic cells and decreases NF-κB activity, we postulated that AAT might also block FDC-mediated HIV replication. Primary CD4(+) T cells were infected with HIV and cultured with FDCs or their supernatant with or without AAT, and ensuing viral RNA and p24 production were monitored. NF-κB activation in the infected cells was also assessed. Virus production was increased in the presence of FDC supernatant, but the addition of AAT at concentrations >0.5 mg/ml inhibited virus replication. AAT blocked the nuclear translocation of NF-κB p50/p65 despite an unexpected elevation in associated phosphorylated and ubiquitinated IκBα (Ub-IκBα). In the presence of AAT, degradation of cytoplasmic IκBα was dramatically inhibited compared with control cultures. AAT did not inhibit the proteasome; however, it altered the pattern of ubiquitination of IκBα. AAT decreased IκBα polyubiquitination linked through ubiquitin lysine residue 48 and increased ubiquitination linked through lysine residue 63. Moreover, lysine reside 63-linked Ub-IκBα degradation was substantially slower than lysine residue 48-linked Ub-IκBα in the presence of AAT, correlating altered ubiquitination with a prolonged IκBα t(1/2). Because AAT is naturally occurring and available clinically, examination of its use as an inhibitory agent in HIV-infected subjects may be informative and lead to the development of similar agents that inhibit HIV replication using a novel mechanism.  相似文献   

14.
Antigen persists for months or even years in lymphoid tissues of immune animals and this antigen is believed to participate in the induction and maintenance of B-cell memory as well as in the maintenance of serum antibody levels. In the present report we describe the phenomenon of antigen localization and long-term retention on mouse follicular dendritic cells (FDCs). The antigens used were injected in the hind footpads of immune mice and the popliteal lymph nodes were the lymphoid organs generally studied. In addition to presenting the morphological features of mouse FDCs, we report the results of a study of the mechanism of antigen migration from the site of initial localization in the lymph node subcapsular sinus to the regions of follicular retention in the cortex. The migration was followed by light and electron microscopy. The results support the concepts that immune complexes are trapped in the subcapsular sinus and are transported by a group of nonphagocytic cells to follicular regions. The mechanism of transport may involve either migration of pre-FDCs with a concomitant maturation into FDCs, or cell-to-cell transport utilizing dendritic cell processes and membrane fluidity; or a combination of the two mechanisms may be in operation.  相似文献   

15.
The IgG binding Fcgamma receptors (FcgammaRs) play a key role in defence against pathogens by linking humoral and cell-mediated immune responses. Impaired expression and/or function of FcgammaR may result in the development of pathological autoimmunity. Considering the functions of FcgammaRs, they are potential target molecules for drug design to aim at developing novel anti-inflammatory and immunomodulatory therapies. Previous data mostly obtained by X-ray analysis of ligand-receptor complexes indicate the profound role of the CH2 domain in binding to various FcgammaRs. Our aim was to localize linear segments, which are able to bind and also to modulate the function of the low affinity FcgammaRs, like FcgammaRIIb and FcgammaRIIIa. To this end a set of overlapping octapeptides was prepared corresponding to the 231-298 sequence of IgG1 CH2 domain and tested for binding to human recombinant soluble FcgammaRIIb. Based on these results, a second group of peptides was synthesized and their binding properties to recombinant soluble FcgammaRIIb, as well as to FcgammaRs expressed on the cell surface, was investigated. Here we report that peptide representing the Arg(255)-Ser(267) sequence of IgG1 is implicated in the binding to FcgammaRIIb. In addition we found that peptides corresponding to the Arg(255)-Ser(267), Lys(288)-Ser(298) or Pro(230)-Val(240) when presented in a multimeric form conjugated to branched chain polypeptide in uniformly oriented copies induced the release of TNFalpha, a pro-inflammatory cytokine from MonoMac monocyte cell line. These findings indicate that these conjugated peptides are able to cluster the activating FcgammaRs, and mediate FcgammaR dependent function. Peptide Arg(255)-Ser(267) can also be considered as a lead for further functional studies.  相似文献   

16.
In HIV-infected patients, large quantities of HIV are associated with follicular dendritic cells (FDCs) in lymphoid tissue. During antiretroviral therapy, most of this virus disappears after six months of treatment, suggesting that FDC-associated virus has little influence on the eventual outcome of long-term therapy. However, a recent theoretical study using a stochastic model for the interaction of HIV with FDCs indicated that some virus may be retained on FDCs for years, where it can potentially reignite infection if treatment is interrupted. In that study, an approximate expression was used to estimate the time an individual virion remains on FDCs during therapy. Here, we determine the conditions under which this approximation is valid, and we develop expressions for the time a virion spends in any bound state and for the effect of rebinding on retention. We find that rebinding, which is influenced by diffusion, may play a major role in retention of HIV on FDCs. We also consider the possibility that HIV is retained on B cells during therapy, which like FDCs also interact with HIV. We find that virus associated with B cells is unlikely to persist during therapy.  相似文献   

17.
Aleutian mink disease parvovirus (ADV) causes a persistent infection associated with circulating immune complexes, immune complex disease, hypergammaglobulinemia, and high levels of antiviral antibody. Although antibody can neutralize ADV infectivity in Crandell feline kidney cells in vitro, virus is not cleared in vivo, and capsid-based vaccines have proven uniformly ineffective. Antiviral antibody also enables ADV to infect macrophages, the target cells for persistent infection, by Fc-receptor-mediated antibody-dependent enhancement (ADE). The antibodies involved in these unique aspects of ADV pathogenesis may have specific targets on the ADV capsid. Prominent differences exist between the structure of ADV and other, more-typical parvoviruses, which can be accounted for by short peptide sequences in the flexible loop regions of the capsid proteins. In order to determine whether these short sequences are targets for antibodies involved in ADV pathogenesis, we studied heterologous antibodies against several peptides present in the major capsid protein, VP2. Of these antibodies, a polyclonal rabbit antibody to peptide VP2:428-446 was the most interesting. The anti-VP2:428-446 antibody aggregated virus particles into immune complexes, mediated ADE, and neutralized virus infectivity in vitro. Thus, antibody against this short peptide can be implicated in key facets of ADV pathogenesis. Structural modeling suggested that surface-exposed residues of VP2:428-446 are readily accessible for antibody binding. The observation that antibodies against a single target peptide in the ADV capsid can mediate both neutralization and ADE may explain the failure of capsid-based vaccines.  相似文献   

18.
IgG immune complexes trigger humoral immune responses by cross-linking of FcRs for IgG (FcgammaRs). In the present study, we investigated role of lipid rafts, glycolipid- and cholesterol-rich membrane microdomains, in the FcgammaR-mediated responses. In retinoic acid-differentiated HL-60 cells, cross-linking of FcgammaRs resulted in a marked increase in the tyrosine phosphorylation of FcgammaRIIa, p58(lyn), and p120(c-cbl), which was inhibited by a specific inhibitor of Src family protein tyrosine kinases. After cross-linking, FcgammaRs and tyrosine-phosphorylated proteins including p120(c-cbl) were found in the low-density detergent-resistant membrane (DRM) fractions isolated by sucrose-density gradient ultracentrifugation. The association of FcgammaRs as well as p120(c-cbl) with DRMs did not depend on the tyrosine phosphorylation. When endogenous cholesterol was reduced with methyl-beta-cyclodextrin, the cross-linking did not induce the association of FcgammaRs as well as p120(c-cbl) with DRMs. In addition, although the physical association between FcgammaRIIa and p58(lyn) was not impaired, the cross-linking did not induce the tyrosine phosphorylation. In human neutrophils, superoxide generation induced by opsonized zymosan or chemoattractant fMLP was not affected or increased, respectively, after the methyl-beta-cyclodextrin treatment, but the superoxide generation induced by the insoluble immune complex via FcgammaRII was markedly reduced. Accordingly, we conclude that the cross-linking-dependent association of FcgammaRII to lipid rafts is important for the activation of FcgammaRII-associated Src family protein tyrosine kinases to initiate the tyrosine phosphorylation cascade leading to superoxide generation.  相似文献   

19.
Microglial ingestion of the amyloid beta-peptide (Abeta) has been viewed as a therapeutic target in Alzheimer's disease, in that approaches that enhance clearance of Abeta relative to its production are predicted to result in decreased senile plaque formation, a proposed contributor to neuropathology. In vitro, scavenger receptors mediate ingestion of fibrillar Abeta (fAbeta) by microglia. However, the finding that cerebral amyloid deposition in a transgenic mouse model of Alzheimer's disease was diminished by inoculation with synthetic Abeta has suggested a possible therapeutic role for anti-Abeta Ab-mediated phagocytosis. Microglia also express C1qR(P), a receptor for complement protein C1q, ligation of which in vitro enhances phagocytosis of immune complexes formed with IgG levels below that required for optimal FcR-mediated phagocytosis. The data presented here demonstrate FcR-dependent ingestion of Abeta-anti-Abeta complexes (IgG-fAbeta) by microglia that is a function of the amount of Ab used to form immune complexes. In addition, C1q incorporated into IgG-fAbeta enhanced microglial uptake of these complexes when they contained suboptimal levels of anti-Abeta Ab. Mannose binding lectin and lung surfactant protein A, other ligands of C1qR(P), also enhanced ingestion of suboptimally opsonized IgG-fAbeta, whereas control proteins did not. Our data suggest that C1qR(P)-mediated events may promote efficient ingestion of Abeta at low Ab titers, and this may be beneficial in paradigms that seek to clear amyloid via FcR-mediated mechanisms by minimizing the potential for destructive Ab-induced complement-mediated processes.  相似文献   

20.
TNFR1-/- mice have been shown to lack networks of mature follicular dendritic cells (FDCs) and they do not form germinal centers. With nonreplicating Ags, IgG titers were inefficiently induced and not maintained. In this study, the neutralizing Ab response and the establishment of B cell memory in TNFR1-/- mice after infection with vesicular stomatitis virus (VSV) were analyzed histologically and functionally. Immunization with VSV-derived protein Ags without adjuvant induced only IgM but no IgG Abs in TNFR1-/- mice, whereas VSV glycoprotein emulsified in CFA or IFA induced IgM and IgG responses that were short-lived and of moderate titer. However, infection with live VSV induced excellent neutralizing IgM and IgG responses in TNFR1-/- mice, and adoptively transferable B cell memory was generated and persisted for more than 300 days. In contrast, IgG levels and Ab-forming cells in the bone marrow declined within 300 days by 90-95% compared with controls. These findings suggest that 1) increased Ag dose and time of Ag availability can substitute for FDC-stored Ab-complexed Ag in the induction of efficient IgG responses in TNFR1-/- mice devoid of classical germinal centers; 2) the induction and maintenance of adoptively transferable B cell memory can occur in the absence of Ag bound to mature FDCs; and 3) the long-term maintenance of elevated IgG titers is largely dependent on FDC-associated persisting Ag. However, about 5-10% of the Ab production remained in the absence of detectable persisting Ag in TNFR1-/- mice, probably either due to immature FDCs being partially functional and/or due to long-lived plasma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号