首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
A theory and experimental method are presented to characterize the kinetics of fast-acting, irreversible proteinase inhibitors. The theory is based upon formal analysis of the case of an irreversible inhibitor competing with a substrate for the active-site of a proteinase. From this theory, an experimental method is described by which the individual microscopic kinetic constants for the interaction of the inhibitor with the proteinase can be determined. These are, for a two-step inhibition reaction sequence, the equilibrium dissociation constant and the first-order rate constant for inhibition, and, for a one-step inhibition reaction sequence, the second-order rate constant for inhibition. The theory and experimental method were validated by an analysis of the inhibition of trypsin by the two-step synthetic inhibitor p-nitrophenyl p-guanidinobenzoate and the one-step protein inhibitor bovine pancreatic trypsin inhibitor. The substrate used in these experiments is a new, fluorogenic substrate for trypsin-like serine proteinases (Cbz-Ile-Pro-Arg-NH)2-Rhodamine, the synthesis and properties of which are described.  相似文献   

2.
R Laura  D J Robison  D H Bing 《Biochemistry》1980,19(21):4859-4864
p-(Amidinophenyl)methanesulfonyl fluoride (p-APMSF) has been synthesized and shown to be a specific, irreversible inhibitor of the class of plasma serine proteases which demonstrate substrate specificity for the positively charged side chains of the amino acid lysine or arginine. In equimolar concentration, this compound causes immediate and complete irreversible inhibition of bovine trypsin and human thrombin. A 5-10-fold molar excess of reagent over enzyme is required to achieve complete irreversible inhibition of bovine Factor Xa, human plasmin, human C1-r, and human C1-s. the Ki of p-APMSF for all of the above-mentioned proteases is between 1 and 2 microM. In contrast, p-APMSF in large molar excess does not inactivate chymotrypsin or acetylcholinesterase. The unique reactivity of p-APMSF has been further shown in comparison with the related compound p-nitrophenyl (p-amidinophenyl)methanesulfonate which is an active-site titrant for thrombin but reacts poorly with Factor Xa, C1-r, and C1-s and is not hydrolyzed by bovine trypsin or human plasmin. Similarly, (p-amidinophenyl)methanesulfonate has a Ki of 30 microM for thrombin but is a poor inhibitor of trypsin, Factor Xa, C1-r, C1-s, and plasmin. Studies with bovine trypsin have demonstrated that the inhibitory activity of p-APMSF is the result of its interaction with the diisopropyl fluorophosphate reactive site. The unique reactivity of this inhibitor classifies it as one of the most effective active site directed reagents for this class of serine proteases. Collectively, these results suggest that the primary substrate binding site of these enzymes, which share a high degree of structural homology, do in fact significantly differ from each other in their ability to interact with low molecular weight inhibitors and synthetic substrates.  相似文献   

3.
Isocoumarins are potent mechanism-based heterocyclic irreversible inhibitors for a variety of serine proteases. Most serine proteases are inhibited by the general serine protease inhibitor 3,4-dichloroisocoumarin, whereas isocoumarins containing hydrophobic 7-acylamino groups are potent inhibitors for human leukocyte elastase and those containing 7-alkylureidogroups are inhibitors for procine pancreatic elastase. Isocoumarins containing basic side chains that resemble arginine are potent inhibitors for trypsin-like enzymes. A number of 3-alkoxy-4-chloro-7-guanidinoisocoumarins are potent inhibitors of bovine thrombin, human factor Xa, human factor XIa, human factor XIIa, human plasma kallikrein, porcine pancreatic kallikrein, and bovine trypsin. Another cathionic derivative, 4-chloro-3-(2-isothiureidoethoxy) isocoumarin, is less reactive toward many of these enzymes but is an extremely potent inhibitor of human plasma kallikrein. Several guanidinoisocoumarins have been tested as anticoagulants in human plasma and are effective at prolonging the prothrombin time. The mechanism of inhibition by this class of heterocyclic inactivators involves formation of an acyl enzyme by reaction of the active site serine with the isocoumarin carbonyl group. Isocoumarins with 7-amino or 7-guanidino groups will then decompose further to quinone imine methide intermediates, which react further with an active site residue (probably His-57) to form stable inhibited enzyme derivatives. Isocoumarins should be useful in further investigations of the physiological function of serine proteases and may have future therapeutic utility for the treatment of emphysema and coagulation disorders.  相似文献   

4.
Inhibition of six serine proteinases (bovine trypsin and chymotrypsin, equine leucocyte proteinases type 1 and 2A, porcine pancreatic elastase type III and rabbit plasmin) by rabbit alpha 1-proteinase inhibitors F and S was studied. In each case examined, the F form reacted more rapidly. The number of moles of an enzyme inhibited by one mole of alpha 1-proteinase inhibitor in a complete reaction (molar inhibitory capacity) ranged from 0.26 (leucocyte proteinase type 1) to 1.01 (trypsin). More significantly, however, the molar inhibitory capacities of both alpha 1-proteinase inhibitors differed for the same enzymes. The highest F/S inhibitory ratio was recorded with chymotrypsin (1.88), and the lowest with elastase (0.69). These differences in molar inhibitory capacities are likely to reflect the dual nature of the reaction between the inhibitor and a proteinase, that is, either complex formation or inactivation of alpha 1-proteinase inhibitor without enzyme inhibition. No evidence was obtained to suggest that differential reactivity and differential inhibitory capacity are interdependent. The observations are consistent with the view that rabbit alpha 1-proteinase inhibitors F and S are closely related yet functionally distinct proteins.  相似文献   

5.
The reaction of gamma-glutamyltranspeptidase with phenobarbital or with thiobarbituric acid resulted in a irreversible loss of its enzymatic activity. The inactivation followed pseudo-first-order kinetics. Half-maximal velocity of inactivation (Ki) at 37 degrees C in the presence of phenobarbital or thiobarbituric acid was calculated to be 43 mM and 20 mM, respectively. The inactivation of the enzyme activity by both these inhibitors was prevented by serine borate, a known competitive inhibitor, and by the substrate, reduced glutathione, suggesting an active-site-directed nature of the these inhibitors. Maleate provided slight protection against inactivation by thiobarbituric acid. Complete inactivation of the enzyme with tritium-labeled phenobarbital resulted in a stoichiometric incorporation of radioactivity into the enzyme protein. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis of tritium-labeled phenobarbital-enzyme complex, nearly all the radioactivity was found to be associated with the small subunit (Mr = 22 000) of the enzyme, indicating that the catalytic component of the enzyme is on the small subunits.  相似文献   

6.
The reaction of chymase, a chymotryptic proteinase from human skin, and bovine pancreatic chymotrypsin with a number of time-dependent inhibitors has been studied. An integrated equation, relating product formation with time, has been derived for the reaction of enzymes with time-dependent inhibitors in the presence of substrate. This is based on a two-step model in which a rapidly reversible, non-covalent complex (EI) is formed prior to a tighter, less readily reversible complex (EI)*). The equation depends on the simplifying assumption [I] much greater than [E], but is applicable to reversible and irreversible slow-binding and tight-binding inhibitors whether or not they show saturation kinetics. The method has been applied to the reaction of chymase and chymotrypsin with the tetrapeptide aldehyde, chymostatin, basic pancreatic trypsin inhibitor and Ala-Ala-Phe-chloromethylketone (AAPCK). The irreversible inhibitor, AAPCK, showed the expected saturation kinetics for both enzymes and the apparent first-order rate constants (k2) and dissociation constants (Ki) for the non-covalent complexes were determined. Chymostatin was a much more potent inhibitor which failed to show a saturation effect. The second-order rate constant of inactivation (k2/Ki), the first-order reactivation rate constant (k-2), and the dissociation constant of the covalent complex (Ki*) were determined. Basic pancreatic trypsin inhibitor, a potent inhibitor of chymotrypsin, had similar kinetics to chymostatin but failed to inhibit chymase. The applicability of the two-step model and the integrated equation to slow- and tight-binding inhibitors is discussed in relation to a number of examples from the literature.  相似文献   

7.
This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar K(i) values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature.  相似文献   

8.
Alam N  Gourinath S  Dey S  Srinivasan A  Singh TP 《Biochemistry》2001,40(14):4229-4233
The ragi alpha-amylase/trypsin bifunctional inhibitor (RATI) from Indian finger millet, Ragi (Eleucine coracana Gaertneri), represents a new class of cereal inhibitor family. It exhibits a completely new motif of trypsin inhibitory site and is not found in any known trypsin inhibitor structures. The alpha-amylase inhibitory site resides at the N-terminal region. These two sites are independent of each other and the inhibitor forms a ternary (1:1:1) complex with trypsin and alpha-amylase. The trypsin inhibition follows a simple competitive inhibition obeying the canonical serine protease inhibitor mechanism. However, the alpha-amylase inhibition kinetics is a complex one if larger (> or =7 glucose units) substrate is used. While a complete inhibition of trypsin activity can be achieved, the inhibition of amylase is not complete even at very high molar concentration. We have isolated the N-terminal fragment (10 amino acids long) by CNBr hydrolysis of RATI. This fragment shows a simple competitive inhibition of alpha-amylase activity. We have also synthesized various peptides homologous to the N-terminal sequence of RATI. These peptides also show a normal competitive inhibition of alpha-amylase with varying potencies. It has also been shown that RATI binds to the larger substrates of alpha-amylase. In light of these observations, we have reexamined the binding of proteinaceous inhibitors to alpha-amylase and its implications on the mechanism and kinetics of inhibition.  相似文献   

9.
A screening test for serine proteinase inhibitors revealed trypsin and urokinase inhibitors in the extract of human cornified cells. No inhibition for α-chymotrypsin, thrombin or plasmin was detected. Characterization of the inhibitors separated with a Sephacryl S-200 gel column demonstrated that: 1) trypsin inhibitor with a molecular weight of 45,000 was labile to heat, acid and alkali and showed temporary inhibition, and 2) urokinase inhibitor with a molecular weight of 35,000 was found relatively stable and exhibited time dependent inhibition. Both were distinct from a known thiol proteinase inhibitor which showed high stability and immediate inhibition. Regulatory roles of serine proteinase inhibitors are postulated.  相似文献   

10.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

11.
In many complexes formed by serine proteinases and their inhibitors, the hydroxyl group provided by water molecule or by the inhibitor Ser residue is located close to the inhibitor P1-P1' reactive site. In order to investigate the role of this group, we synthesized analogues of trypsin inhibitor SFTI-1 isolated from the seeds of sunflower modified in P1 by alpha-hydroxymethylserine (HmSer) and both enantiomers of alpha-hydroxymethylvaline (HmVal). All the synthesized analogues inhibited bovine beta-trypsin and human leukocyte elastase. SFTI-1 analogues with HmVal and HmSer appear to be potent inhibitors of bovine beta-trypsin, whereas [Val5]SFTI-1 is practically inactive. Also trypsin inhibitory activity of [Ser5]SFTI-1 is significantly lower. Since the electrostatic interaction between protonated epsilon-NH2 group of the inhibitor P1 position and beta-carboxylate of trypsin Asp189 is the main driving force for interaction of both molecules, the results obtained are very interesting. We believe that these SFTI-1 analogues belong to a novel class of serine proteinase inhibitors.  相似文献   

12.
1. Bovine (Bos taurus) trypsin and trypsin activity in rat (Rattus norvegicus) pancreatic extract were inhibited by soybean trypsin inhibitor and by bovine basic pancreatic and colostrum inhibitors. 2. Bovine alpha-chymotrypsin was inhibited by soybean and bovine basic pancreatic inhibitors but only weakly by colostrum inhibitor. 3. Chymotrypsin activity in rat pancreatic extract was due to at least three different components against all of which the inhibitors were largely ineffective. 4. It is concluded that bovine colostrum inhibitor has a more limited inhibition spectrum than the phylogenetically related basic pancreatic inhibitor which, in turn, is less active against rat than against bovine enzymes.  相似文献   

13.
Abstract

One of the many control mechanisms of serine proteinases is their specific inhibition by protein proteinase inhibitors. An extract of Acacia schweinfurthii was screened for potential serine proteinase inhibition. It was successfully purified to homogeneity by precipitating with 80% (v/v) acetone and sequential chromatographic steps, including ion-exchange, affinity purification and reversed-phase high performance liquid chromatography. Reducing sodium dodecyl sulphate polyacrylamide gel electrophoresis conditions revealed an inhibitor (ASTI) consisting of two polypeptide chains A and B of approximate molecular weights of 16 and 10?kDa, respectively, and under non-reducing conditions, 26?kDa was observed. The inhibitor was shown to inhibit bovine trypsin (Ki of 3.45?nM) at an approximate molar ratio of inhibitor:trypsin (1:1). The A- and B-chains revealed complete sequences of 140 and 40 amino acid residues, respectively. Sequence similarity (70%) was reported between ASTI A-chain and ACTI A-chain (Acacia confusa) using ClustalW. The B-chain produced a 76% sequence similarity between ASTI and Leucaena leucocephala trypsin inhibitor.  相似文献   

14.
Two proteic inhibitors (I and II) of serine proteases have been purified from the parasitic worm Parascaris equorum by affinity chromatography on immobilized trypsin followed by preparative electrophoresis. They have an apparent relative molecular mass of 9000 and 7000 as determined by gel filtration, a slightly acid isoelectric point (5.5 and 6.1) and a similar amino acid composition. Both inhibitors lack serine, methionine and tyrosine. They bind bovine trypsin extremely strongly with an association constant, Ka, larger than 10(9) M-1, and form a 1:1 complex with this protease. The Ka values for the binding to bovine chymotrypsin are approximately 3.3 X 10(8) M-1 (inhibitor I) and approximately 2 X 10(6) M-1 (inhibitor II). Inhibitor I interacts also with porcine elastase (Ka approximately 5 X 10(7) M-1), while inhibitor II is inactive towards this enzyme.  相似文献   

15.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

16.
Trypsin inhibitory activity from the hemolymph of the tobacco hornworm (Manduca sexta) was purified by affinity chromatography on immobilized trypsin and resolved into two fractions with molecular weights of 14,000 (M. sexta hemolymph trypsin inhibitor (HLTI) A) and 8,000 (HLTI B) by molecular sieve chromatography on Sephadex G-75. Electrophoresis of these inhibitors under reducing conditions on polyacrylamide gels gave molecular weight estimates of 8,300 for HLTI A and 9,100 for HLTI B, suggesting that HLTI A is a dimer and HLTI B is a monomer. Isoelectrofocusing on polyacrylamide gels focused HLTI A as a single band with pI 5.7, whereas HLTI B was resolved into two components with pI values of 5.3 and 7.1. Both inhibitors were stable at 100 degrees C and pH 1.0 for at least 30 min. HLTIs A and B inhibited serine proteases such as trypsin, chymotrypsin, and plasmin, but did not inhibit elastase, papain, pepsin, subtilisin BPN', and thermolysin. In fact, subtilisin BPN' completely inactivated both inhibitors. Both inhibitors formed low-dissociation complexes with trypsin in a 1:1 molar ratio. The inhibition constant for trypsin inhibition by HLTI A was estimated to be 1.45 x 10(-8) M. The HLTI A-chymotrypsin complex did not inhibit trypsin; similarly, the HLTI A-trypsin complex did not inhibit chymotrypsin, indicating that HLTI A has a common binding site for both trypsin and chymotrypsin. The amino-terminal amino acid sequences of HLTIs A and B revealed that both these inhibitors are homologous to bovine pancreatic trypsin inhibitor (Kunitz).  相似文献   

17.
A new trypsin inhibitor (CPTI) has been isolated from Crotalaria paulina seeds. Purification of the inhibitor was carried out by gel filtration, ion-exchange chromatography, and subsequent reversed-phase HPLC. The presence of a single polypeptide chain, with a molecular mass of 20 kDa and isoelectric point 4.0, was detected. The trypsin inhibitor had a Ki value of 4.5 x 10(-8) M and was capable of acting on human, bovine, and porcine trypsin and weakly on bovine chymotrypsin. Amino acid analysis showed that CPTI has a high content of aspartate, glutamate, leucine, serine, and glycine, having 177 amino acid residues in its composition. These data suggest that the protein belongs to the Kunitz-type trypsin inhibitors.  相似文献   

18.
Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N-terminus, a reactive centre loop sequence, and the second order association rate constant (ka') for irreversible complex formation with pancreas serine proteinases at 24 degrees C were determined for each inhibitor. OSZa and OSZb, both with the reactive centre scissile bond P1-P1' Thr downward arrow Ser, were efficient inhibitors of pancreas elastase (ka' > 105M-1 s-1). Only OSZb was also an inhibitor of chymotrypsin at the same site (ka' = 0.9 x 105M-1 s-1). OSZc was a fast inhibitor of trypsin at P1-P1' Arg downward arrow Ser (ka' = 4 x 106M-1 s-1); however, the OSZc-trypsin complex was short-lived with a first order dissociation rate constant kd = 1.4 x 10-4 s-1. OSZc was also an inhibitor of chymotrypsin (ka' > 106M-1 s-1), presumably at the overlapping site P2-P1 Ala downward arrow Arg, but > 90% of the serpin was cleaved as substrate. OSZd was cleaved by chymotrypsin at the putative reactive centre bond P1-P1' Tyr downward arrow Ser, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins compensate for the low content of reversible inhibitors of serine proteinases in oats in protection of the grain against pests or pathogens.  相似文献   

19.
A technique for quickly detecting nanogram quantities of low- and high-molecular-weight inhibitors of some serine proteases is described. The inhibitor solutions are spotted onto agar films which contain either L-1-p-tosylamino-2-phenylethyl chloromethyl ketone (TPCK)-trypsin or tosyl lysine chloromethyl ketone (TLCK)-chymotrypsin. Enzyme inhibition is visualized as colorless zones on a pink background after the films were stained with the chromogenic substrate N-acetyl-DL-phenylalanine-beta-naphthyl ester. The method is used for rapidly testing both high-performance liquid chromatography fractions and thin-layer chromatograms to identify the inhibitors of trypsin and chymotrypsin in complex microbial extracts. The assay is quantitative so that it is possible to compare the specificity of the inhibitory fractions for trypsin and chymotrypsin. Results with standard inhibitors demonstrate the high sensitivity of the method, e.g., inhibition is detected with 1 ng of soybean trypsin inhibitor and 0.3 ng of antipain or chymostatin.  相似文献   

20.
J S McMurray  D F Dyckes 《Biochemistry》1986,25(8):2298-2301
The mechanism of inactivation of serine proteinases by peptide halomethyl ketone inhibitors was studied through the inhibition of trypsin with a series of model peptide ketones (Lys-Ala-LysCH2X). In this series, X is a poor leaving group with increasing electron-withdrawing capacity (X = H, CH2CO2CH3, COCH3, OCOCH3, and F), and as expected, the peptide ketones are reversible, competitive inhibitors of trypsin. The strength of binding of these inhibitors to trypsin increases with the electron-withdrawing ability of X, indicating that the inhibition constant Ki obtained is a measure of reversible hemiketal formation between the inhibitor ketone carbonyl group and the hydroxyl group of the active site serine. A Hammett plot of -log Ki vs. sigma I, the inductive substituent constant of X, reveals a linear relationship between the free energy of binding and the electron-withdrawing power of X. The reversible binding constant obtained for the corresponding chloromethyl ketone Lys-Ala-LysCH2Cl falls on this line, indicating that the reversible binding involves hemiketal formation, which is followed by alkylation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号