首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis B virus surface antigen(HBsAg),a specific antigen on the membrane of Hepatitis B virus (HBV)-infected cells,provides a perfect target for therapeutic drugs.The development of reagents with high affinity and specificity to the HBsAg is of great significance to the early-stage diagnosis and treatment of HBV infection.Herein,we report the selection of RNA aptamers that can specifically bind to HBsAg protein and HBsAg-positive hepatocytes.One high affinity aptamer,HBs-A22,was isolated from an initial ...  相似文献   

2.
深入研究HBV复制机理,筛选参与HBV复制的基因,可能为开发抗乙肝病毒新药提供新 的靶点.本文拟建立一种筛选HBV复制相关基因的方法: RNAi文库感染HepG2.2.15细胞后,利用免疫磁珠收集HBsAg表达降低的细胞,提取DNA,PCR扩增siRNA编码序列,将PCR产物克隆入T-easy载体,随机挑选克隆测序,发现DDB1基因可能参与HBV复制.本试验建立了一种筛选HBV复制相关基因的方法,为大规模全基因组筛选参与HBV复制的基因奠定了基础.  相似文献   

3.
Jia F  Zhang YZ  Liu CM 《Biotechnology letters》2006,28(20):1679-1685
RNA interference (RNAi) might be an efficient antiviral therapy for some obstinate illness. Herein, a retrovirus-based RNAi system was developed to drive expression and delivery of Hepatitis B virus (HBV)-specific short hairpin RNA (shRNA) in HepG2 cells. The levels of HBsAg and HBeAg and that of HBV mRNA were dramatically decreased by this RNAi system in HepG2 cells transfected with Topo-HBV plasmid. Retrovirus-based RNAi thus may be useful for therapy in HBV and other viral infections and provide new clues for prophylactic vaccine development.  相似文献   

4.
BACKGROUND: There has been much research into the use of RNA interference (RNAi) for the treatment of human diseases. Many viruses, including hepatitis B virus (HBV), are susceptible to inhibition by this mechanism. However, for RNAi to be effective therapeutically, a suitable delivery system is required. METHODS: Here we identify an RNAi sequence active against the HBV surface antigen (HBsAg), and demonstrate its expression from a polymerase III expression cassette. The expression cassette was inserted into two different vector systems, based on either prototype foamy virus (PFV) or adeno-associated virus (AAV), both of which are non-pathogenic and capable of integration into cellular DNA. The vectors containing the HBV-targeted RNAi molecule were introduced into 293T.HBs cells, a cell line stably expressing HBsAg. The vectors were also assessed in HepG2.2.15 cells, which secrete infectious HBV virions. RESULTS: Seven days post-transduction, a knockdown of HBsAg by approximately 90%, compared with controls, was detected in 293T.HBs cells transduced by shRNA encoding PFV and AAV vectors. This reduction has been observed up to 5 months post-transduction in single cell clones. Both vectors successfully inhibited HBsAg expression from HepG2.2.15 cells even in the presence of HBV replication. RT-PCR of RNA extracted from these cells showed a reduction in the level of HBV pre-genomic RNA, an essential replication intermediate and messenger RNA for HBV core and polymerase proteins, as well as the HBsAg messenger RNA. CONCLUSIONS: This work is the first to demonstrate that delivery of RNAi by viral vectors has therapeutic potential for chronic HBV infection and establishes the ground work for the use of such vectors in vivo.  相似文献   

5.
6.
7.
Hepatitis B virus (HBV) produces large (L), middle (M), and small (S) envelope proteins, alternatively referred to as hepatitis B surface antigen (HBsAg). Currently, yeast-derived S protein serves as the preventive vaccine, while hepatitis B immune globulin (HBIG) concentrated from pooled plasma of vaccine recipients is employed for post-exposure prophylaxis. However, only a small proportion of the antibodies in HBIG are HBV specific. In the present study, a human monoclonal anti-S antibody (G12) was developed, produced under GLP conditions, and subjected to a panel of functional assays. In vitro results demonstrated high affinity of G12 for the S protein (KD = 7.56 nM). It reacted with envelope proteins of all 7 HBV genotypes tested (A-F, H) by immunofluorescent staining, and more than 97% of HBsAg-positive patient serum samples by enzyme-linked immunosorbent assay. G12 recognized a conformational epitope, although the exact sequence remains unknown. Strikingly, G12 was at least 1,000-fold more potent than HBIG in neutralizing HBV infectivity in both HepaRG cell line and HepG2 cells reconstituted with the HBV receptor. In a transgenic mouse model of HBV persistence, a single peritoneal injection of G12 markedly diminished serum HBsAg titers in all 7 mice, which was sustained for the observation period of 144 d in mice with low pre-treatment levels. While the therapeutic potential of G12 warrants further investigation using a large number of animals, G12 is a potent neutralizing human monoclonal antibody and a promising candidate to replace or supplement HBIG in the prevention of HBV infection.  相似文献   

8.
Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA) has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg) and HBV e antigen (HBeAg), and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR), jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity.  相似文献   

9.
Naturally occurring mutations in surface proteins of Hepatitis B virus (HBV) usually result in altered hepatitis B surface antigen (HBsAg) secretion efficiency. In the present study, we reported two conserved residues, M75 and M103 with respect to HBsAg, mutations of which not only attenuated HBsAg secretion (M75 only), but also suppressed HBV genome replication without compromising the overlapping p-gene product. We also found M75 and M103 can initiate truncated surface protein (TSPs) synthesis upon over-expression of full-length surface proteins, which may possibly contribute to HBV genome replication. However, attempts to rescue replication-defective HBV mutant by co-expression of TSPs initiated from M75 or M103 were unsuccessful, which indicated surface proteins rather than the putative TSPs were involved in regulation of HBV genome replication.  相似文献   

10.
为了研究乙肝病毒侵染肝细胞过程中的功能蛋白 ,通过印迹免疫分析技术从人肝cDNA噬菌体表达库中筛选出一株编码乙肝表面抗原结合蛋白 (hepatitisBsurfaceantigenbindingprotein ,HBsAg BP)的cDNA克隆 .基因测序结果表明 ,该cDNA具有独立的开放阅读框架 ,编码 1个由 344个氨基酸残基构成的可溶性蛋白分子 ,属于免疫球蛋白超家族成员 .将该基因克隆到原核表达载体pTriplEx后 ,在E .coliXL1 Blue菌株中获得 4 4kD的重组蛋白 .重组蛋白经Western印迹和ELISA实验证明具有与乙肝表面抗原特异性结合的能力 .进一步经流式细胞仪实验显示 ,在纯化的重组蛋白存在的情况下 ,天然的HBsAg与肝细胞株HepG2的亲和力显著增高 .结果显示 ,该乙肝表面抗原结合蛋白可能是介导乙肝病毒对肝细胞亲和侵染的可溶性辅助受体 .  相似文献   

11.
Hepatitis B virus (HBV) infection causes major public health problems worldwide. Acyclovir (ACV) is mainly used to inhibit herpes simplex virus (HSV) rather than HBV. In this study, we used the combination principle to design and synthesize nucleoside analogues that contain silatrane on the basis of the structure of ACV. We found that the compounds were effective inhibitors of HBV, both in vitro and in vivo. All of the compounds showed suppressive activity on the expression of HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) in the HepG2.2.15 cell line with low cytotoxicity. One of compounds was studied in HBV transgenic mice model, and the test results showed its ability to reduce the levels of HBsAg, HBeAg and HBV DNA by ELASE and qPCR. Furthermore, significant improvement of T lymphocyte was observed after treatment, as evaluated by flow cytometry (FCM).  相似文献   

12.
A direct involvement of the hepatitis B virus (HBV) preS1-(21-47) sequence in virus attachment to cell membrane receptor(s) and the presence on the plasma membranes of HepG2 cells of protein(s) with receptor activity for HBV have been suggested by many previous experiments. In this study, by using a tetravalent derivative of the preS1-(21-47) sequence, we have isolated by affinity chromatography from detergent-solubilized HepG2 plasma membranes a 44-kDa protein (HBV-binding protein; HBV-BP), which was found to closely correspond to the human squamous cell carcinoma antigen 1 (SCCA1), a member of the ovalbumin family of serine protease inhibitors. Comparison of SCCA1 sequence with the sequence of the corresponding HBV-BP cDNA, cloned by polymerase chain reaction starting from RNA poly(A)(+) fractions extracted from HepG2 cells, indicated the presence of only four nucleotide substitutions in the coding region, leading to three amino acid changes. Intact recombinant HBV-BP lacked inhibitory activity for serine proteases such as alpha-chymotrypsin and trypsin but inhibited with high potency cysteine proteases such as papain and cathepsin L. Direct binding experiments confirmed the interaction of recombinant HBV-BP with the HBV preS1 domain. HepG2 cells overexpressing HBV-BP after transfection of corresponding cDNA showed a virus binding capacity increased by 2 orders of magnitude compared with untransfected cells, while Chinese hamster ovary cells, which normally do not bind to HBV, acquired susceptibility to HBV binding after transfection. Native HBV particle entry was enhanced in transfected cells. Both recombinant HBV-BP and antibodies to recombinant HBV-BP blocked virus binding and internalization in transfected cells as well as in primary human hepatocytes in a dose-dependent manner. Our findings suggest that this protein plays a major role in HBV infection.  相似文献   

13.
Hepatitis delta virus (HDV)-associated particles were purified from the serum of an experimentally infected chimpanzee by size chromatography and by density centrifugation. Hepatitis delta antigen (HDAg) was detected after mild detergent treatment at a column elution volume corresponding to 36-nm particles and banded at a density of 1.25 g/ml. The serum had an estimated titer of 10(9) to 10(10) HDV-associated particles and had only a 10-fold excess of hepatitis B surface antigen (HBsAg) not associated with HDAg. Therefore, HDV appears to be much more efficiently packed and secreted than is its helper virus, hepatitis B virus (HBV), which is usually accompanied by a 1,000-fold excess of HBsAg. The protein compositions of the HDAg-containing particles were analyzed by immunoblotting with HDAg-, HBsAg-, and hepatitis B core antigen-specific antisera and monoclonal antibodies to HBV surface gene products. The HBsAg envelope of HDAg contained approximately 95% P24/GP27s, 5% GP33/36s, and 1% P39/GP42s proteins. This protein composition was more similar to that of the 22-nm particles of HBsAg than to that of complete HBV. The significant amount of GP33/36s suggests that the HBsAg component of the HDV-associated particle carries the albumin receptor. Two proteins of 27 and 29 kilodaltons which specifically bound antibody to HDAg but not HBV-specific antibodies were detected in the interior of the 36-nm particle. Since these proteins were structural components of HDAg and were most likely coded for by HDV, they were designated P27d and P29d.  相似文献   

14.
Hepatitis B virus(HBV) infection is a severe health problem in the world.However,there is still not a satisfactory therapeutic strategy for the HBV infection.To search for new anti-HBV agents with higher efficacy and less side-effects,the inhibitory activities of traditional Chinese medicine Rheum palmatum L.ethanol extract(RPE) against HBV replication were investigated in this study.Quantitative real-time polymerase chain reaction(PCR) was employed to analyze the inhibitory activity of RPE against HBV-DNA replication in a stable HBV-producing cell line HepAD38; the expression levels of HBV surface antigen(HBsAg) and e antigen(HBeAg) were also determined by enzyme linked immunosorbent assay(ELISA) after RPE treatment.RPE could dose-dependently inhibit the production of HBV-DNA and HBsAg.The concentration of 50% inhibition(IC50) was calculated at 209.63,252.53 μg/mL,respectively.However,its inhibitory activity against HBeAg expression was slight even at high concentrations.RPE had a weak cytotoxic effect on HepAD38 cells(CC50 = 1 640 μg/mL) and the selectivity index(SI) was calculated at 7.82.Compared with two anthraquinone derivatives emodin and rhein,RPE showed higher ability of anti-HBV and weaker cytotoxicity.So Rheum palmatum L.might possess other functional agents which could effectively inhibit HBV-DNA replication and HBsAg expression.Further purification of the active agents,identification and modification of their structures to improve the efficacy and decrease the cytotoxicity are required.  相似文献   

15.
Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.  相似文献   

16.
Hepatitis B virus (HBV) produces high quantities of subviral surface antigen particles (HBsAg) which circulate in the blood outnumbering virions of about 1\103–6 times. In individuals coinfected with the defective hepatitis Delta virus (HDV) the small HDV-RNA-genome and Delta antigen circulate as ribonucleoprotein complexes within HBsAg subviral particles. We addressed the question whether subviral HBsAg particles may carry in the same way cellular microRNAs (miRNAs) which are released into the bloodstream within different subcellular forms such as exosomes and microvescicles. Circulating HBsAg particles were isolated from sera of 11 HBsAg carriers by selective immunoprecipitation with monoclonal anti-HBs-IgG, total RNA was extracted and human miRNAs were screened by TaqMan real-time quantitative PCR Arrays. Thirty-nine human miRNAs were found to be significantly associated with the immunoprecipitated HBsAg, as determined by both comparative DDCT analysis and non-parametric tests (Mann-Whitney, p<0.05) with respect to controls. Moreover immunoprecipitated HBsAg particles contained Ago2 protein that could be revealed in ELISA only after 0.5% NP40. HBsAg associated miRNAs were liver-specific (most frequent = miR-27a, miR-30b, miR-122, miR-126 and miR-145) as well as immune regulatory (most frequent = miR-106b and miR-223). Computationally predicted target genes of HBsAg-associated miRNAs highlighted molecular pathways dealing with host-pathogenThe finding that HBsAg particles carry selective pools of hepatocellular miRNAs opens new avenues of research to disentangle the complex interactions between host and HBV and provides a non invasive tool to study the physiopathology of liver epigenetics.  相似文献   

17.
Z Zhao  W Hong  Z Zeng  Y Wu  K Hu  X Tian  W Li  Z Cao 《The Journal of biological chemistry》2012,287(36):30181-30190
Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources.  相似文献   

18.
19.
The infectivity of hepatitis B virus (HBV) produced in vitro by HepG2 cells transfected with HBV DNA (HepG2T14) has been assayed in a chimpanzee. Following inoculation, the chimpanzee underwent a typical course of type B hepatitis infection, characterized by elevation of serum aminotransferases and by histological identification of hepatic damage. Hepatitis B surface antigen and core-related antigen appeared in the serum at weeks 5 and 7, respectively, after infection. HBV DNA was detected in serum samples, and replicative forms of the HBV genome were identified in liver biopsies. Subtype identification of hepatitis B surface antigen and restriction enzyme analysis of HBV DNA in both the inoculum and the serum of the infected chimpanzee confirmed that the hepatitis B infection observed in this animal was caused by viral particles produced by HepG2T14 cells. These findings indicate that, although HepG2 cells do not seem to be susceptible to infection by HBV in vitro, they can produce biologically active infectious virions after transfection with cloned HBV DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号