首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells   总被引:9,自引:3,他引:6  
Homologous recombinational repair of DNA double-strand breaks and crosslinks in human cells is likely to require Rad51 and the five Rad51 paralogs (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2 and Rad51D/Rad51L3), as has been shown in chicken and rodent cells. Previously, we reported on the interactions among these proteins using baculovirus and two- and three-hybrid yeast systems. To test for interactions involving XRCC3 and Rad51C, stable human cell lines have been isolated that express (His)6-tagged versions of XRCC3 or Rad51C. Ni2+-binding experiments demonstrate that XRCC3 and Rad51C interact in human cells. In addition, we find that Rad51C, but not XRCC3, interacts directly or indirectly with Rad51B, Rad51D and XRCC2. These results argue that there are at least two complexes of Rad51 paralogs in human cells (Rad51C–XRCC3 and Rad51B–Rad51C–Rad51D–XRCC2), both containing Rad51C. Moreover, Rad51 is not found in these complexes. X-ray treatment did not alter either the level of any Rad51 paralog or the observed interactions between paralogs. However, the endogenous level of Rad51C is moderately elevated in the XRCC3-overexpressing cell line, suggesting that dimerization between these proteins might help stabilize Rad51C.  相似文献   

2.
Genetic studies in rodent and chicken mutant cell lines have suggested that Rad51 paralogs (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2 and Rad51D/Rad51L3) play important roles in homologous recombinational repair of DNA double-strand breaks and in maintaining chromosome stability. Previous studies using yeast two- and three-hybrid systems have shown interactions among these proteins, but it is not clear whether these interactions occur simultaneously or sequentially in vivo. By utilizing immunoprecipitation with extracts of human cells expressing epitope-tagged Rad51 paralogs, we demonstrate that XRCC2 and Rad51D, while stably interacting with each other, co-precipitate with Rad51C but not with XRCC3. In contrast, Rad51C is pulled down with XRCC3, whereas XRCC2 and Rad51D are not. In addition, Rad51B could be pulled down with Rad51C and Rad51D, but not with XRCC3. These results suggest that Rad51C is involved in two distinct in vivo complexes: Rad51B–Rad51C–Rad51D–XRCC2 and Rad51C–XRCC3. In addition, we demonstrate that Rad51 co-precipitates with XRCC3 but not with XRCC2 or Rad51D, suggesting that Rad51 can be present in an XRCC3–Rad51C–Rad51 complex. These complexes may act as functional units and serve accessory roles for Rad51 in the presynapsis stage of homologous recombinational repair.  相似文献   

3.
The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.  相似文献   

4.
Domain mapping of the Rad51 paralog protein complexes   总被引:9,自引:2,他引:7  
The five human Rad51 paralogs are suggested to play an important role in the maintenance of genome stability through their function in DNA double-strand break repair. These proteins have been found to form two distinct complexes in vivo, Rad51B–Rad51C–Rad51D–Xrcc2 (BCDX2) and Rad51C–Xrcc3 (CX3). Based on the recent Pyrococcus furiosus Rad51 structure, we have used homology modeling to design deletion mutants of the Rad51 paralogs. The models of the human Rad51B, Rad51C, Xrcc3 and murine Rad51D (mRad51D) proteins reveal distinct N-terminal and C-terminal domains connected by a linker region. Using yeast two-hybrid and co-immunoprecipitation techniques, we have demonstrated that a fragment of Rad51B containing amino acid residues 1–75 interacts with the C-terminus and linker of Rad51C, residues 79–376, and this region of Rad51C also interacts with mRad51D and Xrcc3. We have also determined that the N-terminal domain of mRad51D, residues 4–77, binds to Xrcc2 while the C-terminal domain of mRad51D, residues 77–328, binds Rad51C. By this, we have identified the binding domains of the BCDX2 and CX3 complexes to further characterize the interaction of these proteins and propose a scheme for the three-dimensional architecture of the BCDX2 and CX3 paralog complexes.  相似文献   

5.

Background  

The homologous recombination (HR) pathway is vital for maintaining genomic integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) are essential for this process in vertebrates, and the RAD51D paralog is unique in that it participates in both HR repair and telomere maintenance. RAD51D is also known to directly interact with the RAD51C and XRCC2 proteins. Rad51d splice variants have been reported in mouse and human tissues, supportive of a role for alternative splicing in HR regulation. The present study evaluated the interaction of the Rad51d splice isoform products with RAD51C and XRCC2 and their expression patterns.  相似文献   

6.
Metazoan Rad51 plays a central role in homologous DNA recombination, and its activity is controlled by a number of Rad51 cofactors. These include five Rad51 paralogs, Rad51B, Rad51C, Rad51D, XRCC2 and XRCC3. We previously hypothesized that all five paralogs participate collaboratively in repair. However, this idea was challenged by the biochemical identification of two independent complexes composed of either Rad51B/C/D/XRCC2 or Rad51C/XRCC3. To investigate if this biochemical finding is matched by genetic interactions, we made double mutants in either the same complex (rad51b/rad51d) or in both complexes (xrcc3/rad51d). In agreement with the biochemical findings the double deletion involving both complexes had an additive effect on the sensitivity to camptothecin and cisplatin. The double deletion of genes in the same complex, on the other hand, did not further increase the sensitivity to these agents. Conversely, all mutants tested displayed comparatively mild sensitivity to γ-irradiation and attenuated γ-irradiation-induced Rad51 foci formation. Thus, in accord with our previous conclusion, all paralogs appear to collaboratively facilitate Rad51 action. In conclusion, our detailed genetic study reveals a complex interplay between the five Rad51 paralogs and suggests that some of the Rad51 paralogs can separately operate in later step of homologous recombination.  相似文献   

7.
In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.  相似文献   

8.
The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3) are expressed in mitotically growing cells and are thought to play mediating roles in homologous recombination, although their precise functions remain unclear. Among the five paralogs, Rad51C was found to be a central component present in two complexes, Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2. We have shown previously that the human Rad51C protein exhibits three biochemical activities, including DNA binding, ATPase, and DNA duplex separation. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA-cross-linking agent mitomycin C and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G(2)/M phases of the cell cycle but not in G(1) phase. Together, these results provide direct cellular evidence for the function of human Rad51C in homologous recombinational repair.  相似文献   

9.
Rad51D, one of five Rad51 paralogs, is required for homologous recombination and disruption of Holliday junctions with bloom syndrome protein (BLM) in vertebrates. The N-terminal domain of Rad51D is highly conserved in eukaryotic Rad51D orthologs and is essential for protein-protein interaction with XRCC2, but nothing is known about its individual structure or function. In this study, we determined the solution structure of the human Rad51D N-terminal domain (residues 1-83), which consists of four short helices flanked by long N- and C-terminal tails. Interestingly, the position of the N-terminal tail (residues 1-13) is fixed within the domain structure via several hydrophobic interactions between Leu4 and Thr27, Leu4 and Val28, and Val6 and Ile17. We show that the domain preferentially binds to ssDNA versus dsDNA and does not bind to a mobile Holliday junction by electrophoretic mobility shift assay. NMR titration and dynamics studies showed that human Rad51D-N interacts with ssDNA by positively charged and hydrophobic residues on its surface. The results suggest that the N-terminal domain of Rad51D is required for the ssDNA-specific binding function of human Rad51D and that the conserved N-terminal domains of other Rad51 paralogs may have distinguishable functions from each other in homologous recombination.  相似文献   

10.
The Rad51 protein in eukaryotic cells is a structural and functional homolog of Escherichia coli RecA with a role in DNA repair and genetic recombination. Several proteins showing sequence similarity to Rad51 have previously been identified in both yeast and human cells. In Saccharomyces cerevisiae, two of these proteins, Rad55p and Rad57p, form a heterodimer that can stimulate Rad51-mediated DNA strand exchange. Here, we report the purification of one of the representatives of the RAD51 family in human cells. We demonstrate that the purified RAD51L3 protein possesses single-stranded DNA binding activity and DNA-stimulated ATPase activity, consistent with the presence of "Walker box" motifs in the deduced RAD51L3 sequence. We have identified a protein complex in human cells containing RAD51L3 and a second RAD51 family member, XRCC2. By using purified proteins, we demonstrate that the interaction between RAD51L3 and XRCC2 is direct. Given the requirements for XRCC2 in genetic recombination and protection against DNA-damaging agents, we suggest that the complex of RAD51L3 and XRCC2 is likely to be important for these functions in human cells.  相似文献   

11.
The Xrcc2 and Rad51D/Rad51L3 proteins, which belong to the Rad51 paralogs, are required for homologous recombinational repair (HRR) in vertebrates. The Xrcc2 and Rad51D/Rad51L3 genes, whose products interact with each other, have essential roles in ensuring normal embryonic development. In the present study, we coexpressed the human Xrcc2 and Rad51D/Rad51L3 proteins (Xrcc2 and Rad51D, respectively) in Escherichia coli, and purified the Xrcc2*Rad51D complex to homogeneity. The Xrcc2 small middle dotRad51D complex catalyzed homologous pairing between single-stranded and double-stranded DNA, similar to the function of the Xrcc3*Rad51C complex, which is another complex of the Rad51 paralogs. An electron microscopic analysis showed that Xrcc2*Rad51D formed a multimeric ring structure in the absence of DNA. In the presence of ssDNA, Xrcc2*Rad51D formed a filamentous structure, which is commonly observed among the human homologous pairing proteins, Rad51, Rad52, and Xrcc3*Rad51C.  相似文献   

12.
Replication protein A (RPA), a heterotrimeric single-stranded DNA binding protein, is required for recombination, and stimulates homologous pairing and DNA strand exchange promoted in vitro by human recombination protein HsRad51. Co-immunoprecipitation revealed that purified RPA interacts physically with HsRad51, as well as with HsDmc1, the homolog that is expressed specifically in meiosis. The interaction with HsRad51 was mediated by the 70 kDa subunit of RPA, and according to experiments with deletion mutants, this interaction required amino acid residues 169-326. In exponentially growing mammalian cells, 22% of nuclei showed foci of RPA protein and 1-2% showed foci of Rad51. After gamma-irradiation, the percentage of cells with RPA foci increased to approximately 50%, and those with Rad51 foci to 30%. All of the cells with foci of Rad51 had foci of RPA, and in those cells the two proteins co-localized in a high fraction of foci. The interactions of human RPA with Rad51, replication proteins and DNA are suited to the linking of recombination to replication.  相似文献   

13.
Homologous recombinational repair preserves chromosomal integrity by removing double-strand breaks, cross-links, and other DNA damage. In eukaryotic cells, the Rad51 paralogs (XRCC2/3, Rad51B/C/D) are involved in this process, although their exact functions are largely undetermined. All five paralogs contain ATPase motifs, and XRCC3 exists in a single complex with Rad51C. To examine the function of this Rad51C-XRCC3 complex, we generated mammalian expression vectors that produce human wild-type XRCC3 or mutant XRCC3 with either a nonconservative mutation (K113A) or a conservative mutation (K113R) in the GKT Walker A box of the ATPase motif. The three vectors were independently transfected into Xrcc3-deficient irs1SF Chinese hamster ovary cells. Wild-type XRCC3 complemented irs1SF cells, albeit to varying degrees, whereas ATPase mutants had no complementing activity, even when the mutant protein was expressed at comparable levels to that in wild-type-complemented clones. Because of dysfunction of the mutants, we propose that ATP binding and hydrolyzing activities of XRCC3 are essential. We tested in vitro complex formation by wild-type and mutant XRCC3 with His6-tagged Rad51C upon co-expression in bacteria, nickel-affinity purification, and Western blotting. Wild-type and K113A mutant XRCC3 formed stable complexes with Rad51C and co-purified with Rad51C, whereas the K113R mutant did not and was predominantly insoluble. The addition of 5 mm ATP but not ADP also abolished complex formation by the wild-type proteins. These results suggest that XRCC3 probably regulates the dissociation and formation of Rad51C-XRCC3 complex through ATP binding and hydrolysis with both processes being essential for the ability of the complex to participate in homologous recombinational repair.  相似文献   

14.
The Rad51 protein, a homologue of the bacterial RecA protein, is an essential factor for both meiotic and mitotic recombination. The N-terminal domain of the human Rad51 protein (HsRad51) directly interacts with DNA. Based on a yeast two-hybrid analysis, it has been reported that the N-terminal region of the Saccharomyces cerevisiae Rad51 protein binds Rad52;S. cerevisiae Rad51 and Rad52 both activate the homologous pairing and strand exchange reactions. Here, we show that the HsRad51 N-terminal region, which corresponds to the Rad52-binding region of ScRad51, does not exhibit strong binding to the human Rad52 protein (HsRad52). To investigate its function, the C-terminal region of HsRad51 was randomly mutagenized. Although this region includes the two segments corresponding to the putative DNA-binding sites of RecA, all seven of the mutants did not decrease, but instead slightly increased, the DNA binding. In contrast, we found that some of these HsRad51 mutations significantly decreased the HsRad52 binding. Therefore, we conclude that these amino acid residues are required for the HsRad51.HsRad52 binding. HsRad52, as well as S. cerevisiae Rad52, promoted homologous pairing between ssDNA and dsDNA, and higher homologous pairing activity was observed in the presence of both HsRad51 and HsRad52 than with either HsRad51 or HsRad52 alone. The HsRad51 F259V mutation, which strongly impaired the HsRad52 binding, decreased the homologous pairing in the presence of both HsRad51 and HsRad52, without affecting the homologous pairing by HsRad51 alone. This result suggests the importance of the HsRad51.HsRad52 interaction in homologous pairing.  相似文献   

15.
Rad52-dependent homologous recombination (HR) is regulated by the antirecombinase activities of Srs2 and Rqh1/Sgs1 DNA helicases in fission yeast and budding yeast. Functional analysis of Srs2 in Schizosaccharomyces pombe led us to the discovery of Sws1, a novel HR protein with a SWIM-type Zn finger. Inactivation of Sws1 suppresses the genotoxic sensitivity of srs2Delta and rqh1Delta mutants and rescues the inviability of srs2Delta rqh1Delta cells. Sws1 functions at an early step of recombination in a pro-recombinogenic complex with Rlp1 and Rdl1, two RecA-like proteins that are most closely related to the human Rad51 paralogs XRCC2 and RAD51D, respectively. This finding indicates that the XRCC2-RAD51D complex is conserved in lower eukaryotes. A SWS1 homolog exists in human cells. It associates with RAD51D and ablating its expression reduces the number of RAD51 foci. These studies unveil a conserved pathway for the initiation and control of HR in eukaryotic cells.  相似文献   

16.
Interaction of human recombination proteins Rad51 and Rad54.   总被引:11,自引:5,他引:6       下载免费PDF全文
The cDNA for human protein HsRad54, which is a structural homolog of Saccharomyces cerevisiae recombination/repair protein Rad54, was cloned and expressed in Escherichia coli. As demonstrated by analysis in vitro and in vivo, HsRad54 protein interacts with human Rad51 recombinase. The interaction is mediated by the N-terminal domain of HsRad54 protein, which interacts with both free and DNA-bound HsRad51 protein.  相似文献   

17.
DNA repair by homologous recombination is essential for preserving genomic integrity. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) play important roles in this process. In this study, we show that human RAD51 interacts with RAD51C-XRCC3 or RAD51B-C-D-XRCC2. In addition to being critical for RAD51 focus formation, RAD51C localizes to DNA damage sites. Inhibition of RAD51C results in a decrease in cellular proliferation consistent with a role in repairing double-strand breaks (DSBs) that occur naturally. To monitor a single DNA repair event, we developed immunofluorescence and chromatin immunoprecipitation (ChIP) methods on human cells where a unique DSB can be created in vivo. Using this system, we observed a single focus of RAD51C, RAD51 and 53BP1, which colocalized with gamma-H2AX. ChIPs revealed that endogenous human RAD51, RAD51C, RAD51D, XRCC2, XRCC3 and MRE11 proteins are recruited in the S-G2 phase of the cell cycle, while Ku80 is recruited during G1. We propose that RAD51C ensures a tight regulation of RAD51 assembly during DSB repair and plays a direct role in repairing DSBs in vivo.  相似文献   

18.
RAD51B and RAD51C are two of five known paralogs of the human RAD51 protein that are thought to function in both homologous recombination and DNA double-strand break repair. This work describes the in vitro and in vivo identification of the RAD51B/RAD51C heterocomplex. The RAD51B/RAD51C heterocomplex was isolated and purified by immunoaffinity chromatography from insect cells co-expressing the recombinant proteins. Moreover, co-immunoprecipitation of the RAD51B and RAD51C proteins from HeLa, MCF10A, and MCF7 cells strongly suggests the existence of an endogenous RAD51B/RAD51C heterocomplex. We extended these observations to examine the interaction between the RAD51B/RAD51C complex and the other RAD51 paralogs. Immunoprecipitation using protein-specific antibodies showed that RAD51C is central to a single large protein complex and/or several smaller complexes with RAD51B, RAD51D, XRCC2, and XRCC3. However, our experiments showed no evidence for the inclusion of RAD51 within these complexes. Further analysis is required to elucidate the function of the RAD51B/RAD51C heterocomplex and its association with the other RAD51 paralogs in the processes of homologous recombination and DNA double-strand break repair.  相似文献   

19.
Rad51 is a homolog of the bacterial RecA recombinase, and a key factor in homologous recombination in eukaryotes. Rad51 paralogs have been identified from yeast to vertebrates. Rad51 paralogs are thought to play an important role in the assembly or stabilization of Rad51 that promotes homologous pairing and strand exchange reactions. We previously characterized two RAD51 paralogous genes in Arabidopsis (Arabidopsis thaliana) named AtRAD51C and AtXRCC3, which are homologs of human RAD51C and XRCC3, respectively, and described the interaction of their products in a yeast two-hybrid system. Recent studies showed the involvement of AtXrcc3 in DNA repair and functional role in meiosis. To determine the role of RAD51C in meiotic and mitotic recombination in higher plants, we characterized a T-DNA insertion mutant of AtRAD51C. Although the atrad51C mutant grew normally during vegetative developmental stage, the mutant produced aborted siliques, and their anthers did not contain mature pollen grains. Crossing of the mutant with wild-type plants showed defective male and female gametogeneses as evidenced by lack of seed production. Furthermore, meiosis was severely disturbed in the mutant. The atrad51C mutant also showed increased sensitivity to gamma-irradiation and cisplatin, which are known to induce double-strand DNA breaks. The efficiency of homologous recombination in somatic cells in the mutant was markedly reduced relative to that in wild-type plants.  相似文献   

20.
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号