首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   14篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   12篇
  2014年   15篇
  2013年   11篇
  2012年   19篇
  2011年   15篇
  2010年   7篇
  2009年   10篇
  2008年   12篇
  2007年   11篇
  2006年   7篇
  2005年   14篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1978年   1篇
  1967年   1篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
1.
In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent.  相似文献   
2.
Histone acetyltransferase 1 (Hat1) is responsible for the acetylation of newly synthesized histone H4 on lysines 5 and 12 during the process of chromatin assembly. To understand the broader biological role of Hat1, we have generated a conditional mouse knockout model of this enzyme. We previously reported that Hat1 is required for viability and important for mammalian development and genome stability. In this study, we show that haploinsufficiency of Hat1 results in a significant decrease in lifespan. Defects observed in Hat1+/? mice are consistent with an early‐onset aging phenotype. These include lordokyphosis (hunchback), muscle atrophy, minor growth retardation, reduced subcutaneous fat, cancer, and paralysis. In addition, the expression of Hat1 is linked to the normal aging process as Hat1 mRNA and protein becomes undetectable in many tissues in old mice. At the cellular level, fibroblasts from Hat1 haploinsufficient embryos undergo early senescence and accumulate high levels of p21. Hat1+/? mouse embryonic fibroblasts (MEFs) display modest increases in endogenous DNA damage but have significantly higher levels of reactive oxygen species (ROS). Consistently, further studies show that Hat1?/? MEFs exhibit mitochondrial defects suggesting a critical role for Hat1 in mitochondrial function. Taken together, these data show that loss of Hat1 induces multiple hallmarks of early‐onset aging.  相似文献   
3.
4.
5.
Meiosis creates genetic diversity by recombination and segregation of chromosomes. The synaptonemal complex assembles during meiotic prophase I and assists faithful exchanges between homologous chromosomes, but how its assembly/disassembly is regulated remains to be understood. Here, we report how two major posttranslational modifications, phosphorylation and ubiquitination, cooperate to promote synaptonemal complex assembly. We found that the ubiquitin ligase complex SCF is important for assembly and maintenance of the synaptonemal complex in Drosophila female meiosis. This function of SCF is mediated by two substrate-recognizing F-box proteins, Slmb/βTrcp and Fbxo42. SCF-Fbxo42 down-regulates the phosphatase subunit PP2A-B56, which is important for synaptonemal complex assembly and maintenance.  相似文献   
6.
DNA macroarrays were developed on the basis of the known Ureaplasma parvum genome, which enabled rapid acquisition of the information on the changes in the microbial genome. For amplification of the PCR gene copies, 613 pairs of oligonucleotide primers were developed. Optimal conditions were determined for immobilization of the PCR products on a Nylon membrane and for hybridization with U. parvum chromosomal DNA. The DNA macroarrays were used to compare the nucleotide sequences of the genomes of laboratory strains of U. parvum and U. urealyticum.  相似文献   
7.
Journal of Plant Growth Regulation - The original version of this article unfortunately contained a mistake in Fig. 5. The dot lines are missing and some unnecessary circles are filled in...  相似文献   
8.
Intracellular recognition of non‐self and also self‐nucleic acids can result in the initiation of potent pro‐inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2′–5′), which then binds to the endoplasmic reticulum resident protein STING. This initiates a signaling cascade that triggers the induction of an antiviral immune response. While most studies on intracellular nucleic acids have focused on dsRNA or dsDNA, it has remained unexplored whether cytosolic RNA:DNA hybrids are also sensed by the innate immune system. Studying synthetic RNA:DNA hybrids, we indeed observed a strong type I interferon response upon cytosolic delivery of this class of molecule. Studies in THP‐1 knockout cells revealed that the recognition of RNA:DNA hybrids is completely attributable to the cGAS–STING pathway. Moreover, in vitro studies showed that recombinant cGAS produced cGAMP upon RNA:DNA hybrid recognition. Altogether, our results introduce RNA:DNA hybrids as a novel class of intracellular PAMP molecules and describe an alternative cGAS ligand next to dsDNA.  相似文献   
9.
Phenylethanoid glycosides are naturally occurring water-soluble compounds with remarkable biological properties that are widely distributed in the plant kingdom. Verbascoside is a phenylethanoid glycoside that was first isolated from mullein but is also found in several other plant species. It has also been produced by in vitro plant culture systems, including genetically transformed roots (so-called ‘hairy roots’). Verbascoside is hydrophilic in nature and possesses pharmacologically beneficial activities for human health, including antioxidant, anti-inflammatory and antineoplastic properties in addition to numerous wound-healing and neuroprotective properties. Recent advances with regard to the distribution, (bio)synthesis and bioproduction of verbascoside are summarised in this review. We also discuss its prominent pharmacological properties and outline future perspectives for its potential application.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号