首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Y Chu  S Hughes  T Chan-Ling 《FASEB journal》2001,15(11):2013-2015
The presence of astrocyte precursor cells (APCs) and time course and topography of astrocyte differentiation during development were investigated by triple-label immunohistochemistry with intact fetal and adult human retinas. Throughout retinal development and adulthood, expression of Pax2 was restricted to cells of the astrocytic lineage. Three distinct stages of astrocytic differentiation were identified during development: i) Pax2+/vimentin+/GFAP- APCs; ii) Pax2+/vimentin+/GFAP+ immature perinatal astrocytes; and iii) Pax2+/vimentin-/GFAP+ mature perinatal astrocytes. In adult, cells with the antigenic phenotype of mature perinatal astrocytes were restricted to a region surrounding the optic nerve head (ONH), whereas cells at a fourth stage of differentiation, adult astrocytes (Pax2-/vimentin-/GFAP+), were apparent throughout the vascularized retina. APC appearance was centered around the ONH and preceded the appearance of perinatal astrocytes. A cluster of Pax2+ somas was also present in a small region surrounding the ONH at the ventricular surface of the developing retina, which suggests the existence of two distinct sites of astrocytic differentiation. The coincidence in the location of APCs and perinatal astrocytes at the ventricular zone with that of optic nerve colobomas, together with the association of Pax2 gene mutations with this condition, suggests that coloboma formation may result from impaired astrocyte differentiation during development.  相似文献   

2.
3.
4.
5.
6.
7.
8.
1. Astrocytes are the most numerous cellular elements in the central nervous tissue, where they play a critical role in physiological and pathological events. The biological signals regulating astrocyte growth and differentiation are relevant for both physiology and pathology, but they are still little understood.2. Using a poorly differentiated glioma cell line, GL15, we investigated whether, in long-term subculture, this could upregulate the expression of glial fibrillary acidic protein (GFAP), as described in some rodent astrocyte cell lines. Under the same culture conditions, we investigated glutamine synthetase (GS) activity, growth-associated protein (GAP)-43 expression, and expression of several neutrotrophic factors.3. A dramatic increase in GFAP expression was evidenced by Western blotting during progressive in vitro growth of GL15 cells. GS specific activity was also upregulated in long-term culture. The time spent in vitro by GL15 cells did not affect GAP-43 and neutrophic factor BDNF and NT3 expression as revealed by RT-PCR analysis.4. Our results suggest that, in GL15, GFAP and GS genes may have common or integrated regulatory mechanisms elicited at the cell confluency which could be relevant for both astrocyte physiology and astrocyte pathology. These mechanisms are not involved in GAP-43 and neutrophic factor BDNF and NT3 expression.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Reactive astrogliosis is the universal response to any brain insult. It is characterized by cellular hypertrophy, up-regulation of the astrocyte marker glial fibrillary acidic protein (GFAP), and proliferation. The source of these proliferating cells is under intense debate. Progenitor cells derived from the subventricular zone (SVZ), cells positive for chondroitin sulfate proteoglycan (NG2(+)), and de-differentiated astrocytes have been proposed as the origin of proliferating cells following injury. We have analyzed the effect of intraventricular-applied 6-hydroxydopamine (6-OHDA) on the proliferation and morphology of astrocytes in rat cortex and striatum by means of immunohistochemistry and confocal laser microscopy. At 4 days post-lesion, GFAP expression increased markedly. A subpopulation of the GFAP(+) cells co-expressed Ki-67, indicating that these cells were proliferating. To investigate whether these cells (1) arose from migrating SVZ progenitor cells, (2) derived from NG2(+) progenitor cells, or (3) de-differentiated from resident astrocytes, we studied the expression of the migration marker doublecortin (Dcx), the oligodendrocyte progenitor marker NG2, and the progenitor markers Nestin and Pax6. The proliferating Ki-67(+) cells co-expressed Nestin and Pax6, whereas no co-expression of Ki-67 with NG2 or the migration marker Dcx was observed. Thus, resident astrocytes de-differentiate, in response to the intraventricular application of 6-OHDA, to a phenotype resembling radial glia cells, which represent transient astrocyte precursors during development. An understanding of the mechanisms of the de-differentiation of mature astrocytes might be useful for designing new approaches to cell therapy in neurodegenerative diseases such as Parkinson's disease.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号