首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
展鹏  刘新泳 《生命的化学》2006,26(5):399-402
病毒蛋白R(viral protein regulatory,Vpr)是HIV-1的辅助蛋白,它可以调节逆转录的保真性,促进整合前复合物的核运输,影响细胞周期进程,诱导细胞凋亡,并对宿主及病毒的基因表达具有调节作用。它的多重作用使人们对HIV-1生命周期及与细胞的关系有了更新的认识,启发人们发现基于Vpr蛋白的新型抗HIV-1疗法。该文介绍Vpr蛋白在HIV-1生命周期中的各种作用。  相似文献   

2.
HIV-1是造成世界艾滋病大流行的主要病毒,其在细胞中的复制过程大体分为:吸附,膜融合,脱衣壳,逆转录,入核,整合,转录翻译,病毒包装及出膜。针对这些过程,宿主细胞进化出各种细胞限制因子来限制HIV-1感染细胞。本文简要介绍TRIM5α、APOBEC3G和束缚蛋白(tetherin)等3个细胞限制因子及其基因多态性。  相似文献   

3.
反式激活应答(transactivation response,TAR)元件RNA作为HIV-1中的一种非编码RNA,从转录与翻译水平负调控HIV-1的基因表达.同时HIV-1采取了相应的策略拮抗TAR RNA的负调控作用:病毒蛋白Tat或细胞蛋白TAR RNA结合蛋白(TRBP)结合TAR RNA后,分别在转录与翻译水平促进HIV-1的基因表达.此外,TAR编码的miRNA有助于保持HIV的潜伏感染及阻止细胞凋亡.TAR与其它蛋白间相互作用及其功能的研究对于深入了解HIV-1感染细胞后的调控机制,寻求新的抗HIV治疗靶点具有重要意义.  相似文献   

4.
Human immunodeficiency virus-1(HIV-1)辅助蛋白在其感染和艾滋病发病过程中起着非常重要的作用.Regulator of expression of virion proteins(Rev)作为HIV-1辅助蛋白之一,可以调节病毒结构蛋白mRNA出核转运和蛋白表达,对于病毒的复制至关重要.为研究Rev蛋白对靶细胞表犁和功能的影响,本实验采用电穿孔的方法,将HIV-1的rev基因导入THP-1细胞,通过流式分选结合G418筛选的方法建立稳定表达Rev蛋白的细胞模型;并通过RT-PCR、荧光观察及流式检测的方法,在mRNA和蛋白两个水平对所建立的细胞模犁进行鉴定.结果证实rev基凶成功导入了THP-1细胞并稳定表达,为后续rev基因产物与细胞相互作用的研究提供了平台.  相似文献   

5.
BST-2是最近发现的可以抑制成熟HIV-1(human immunodeficiency virus,HIV)病毒颗粒从哺乳动物细胞表面释放的宿主因子,随之发现其也可以抑制多种包膜病毒的释放。本研究采用密码子优化的表达HIV-1 gag和gag-pol蛋白的质粒所形成的病毒样颗粒作为研究对象,观测BST-2对这两种病毒样颗粒(Virus-like particle,VLP)的释放抑制情况及其作用机制。结果发现,瞬时表达和稳定表达的BST-2均可以显著抑制病毒样颗粒从哺乳动物细胞释放,同时发现这两种病毒样颗粒(gag/gag-pol)的释放都可以被BST-2抑制;而且,HIV-1中Vpu蛋白可以拮抗BST-2抑制HIV病毒样颗粒释放的作用,另外,通过化学试剂和酶学方法处理,确证BST-2可以被包装进病毒样颗粒中。  相似文献   

6.
高效抗逆转录病毒治疗(HAART)可以有效地抑制人类免疫缺陷病毒Ⅰ型(HIV-1)的复制及血浆病毒载量,延缓发病进程,改善、提高患者的生活质量和存活时间。但是,一旦停止治疗就会导致血浆病毒血症迅速反弹,HIV-1以原病毒的形式在静息记忆CD4+T等细胞中的持续存在是清除HIV-1的一个障碍。HIV-1基因转录的激活与阻抑决定了受感染细胞进入产毒性感染或潜伏感染。本文从原病毒整合位置与转录干扰、细胞转录因子与HIV-1启动子相互作用招募RNA聚合酶起始转录、转录的表观遗传调控和反式激活因子Tat及其相关蛋白促进转录延伸等方面探讨了HIV-1原病毒转录调控机制。  相似文献   

7.
TARRNA结合蛋白是细胞中双链RNA结合蛋白家族成员之一.它可以结合HIV-1TARRNA,并与Tat协同作用激活LTR表达,进而促进病毒的转录与翻译.TRBP也是将干扰素抗病毒通路与RNA干扰免疫通路相连的一种细胞蛋白.在干扰素诱生的PKR反应中,TRBP通过直接抑制PKR的自磷酸化、与PKR竞争通用的RNA底物或与PACT形成异源二聚体等机制抑制细胞内的PKR反应,从而降低了PKR介导的对病毒表达的抑制作用.TRBP与Dicer和Ago2等组成的RNA诱导沉默复合体,在RNA干扰中发挥着关键作用并调控随后的序列特异性降解.在HIV-1感染中,TRBP更倾向于促进病毒的表达与复制,因此TRBP也成为控制HIV-1感染的新靶点.  相似文献   

8.
HIV-1感染可以改变宿主细胞的表达谱,上调和病毒转录复制翻译包装所需的宿主蛋白,使宿主变成更加适应病毒复制繁殖的环境。研究表明丝氨酸/苏氨酸蛋白激酶Citron kinase(citK)可以促进HIV-1病毒的包装释放,所以我们在本文中进一步探讨了HIV-1感染对Citron kinase在自然生理状态下的表达是否有调节作用。我们用含有荧光素酶报告基因的HIV-1假病毒感染外周血单个核细胞(PBMC)和HEK293T细胞系,检测Citron kinase表达的上调情况。此外,将Citron kinase的上游启动子克隆入含荧光素酶报告基因的载体上,检测HIV假病毒感染对Citron kinase启动子的影响。结果显示:HIV-1可以显著提高PBMC细胞中Citron kinase的表达量,而Citron kinase为HIV-1复制包装所需。在原代CD4+T细胞中过表达Citron kinase,HIV-1的复制可以提高2倍以上。沉默Citron kinase的表达,HIV-1病毒产生量显著降低。在HEK293T细胞系中,HIV-1假病毒感染可以使Citron kinase的mRNA的水平提高2.5倍,蛋白表达量提高2.7倍。我们通过将Citron kinase的启动子克隆到含有荧光素酶报告系统的载体上,感染HIV-1假病毒,发现荧光素酶的活性增加。这提示着HIV-1感染通过转录水平上调Citron kinase的表达,从而为病毒创造复制繁殖更有利的宿主环境。  相似文献   

9.
研究了重组痘苗病毒表达的HIV-1核心蛋白(Gag)p17-p24蛋白的一些生物学及免疫学特点。间接免疫荧光、Dot ELISA及Western blot结果表明,构建的两株重组病毒分别表达了HIV-1 Gag p24及p17-p24融合蛋白。电镜观察证实,Gag p24及p17-24重组蛋白均可形成病毒样粒子。重组病毒可诱导小鼠产生抗HIV-1 Gag p24抗体。重组病毒感染BHK21细胞后,可见由于细胞凋亡而致的染色体DNA断裂“梯子”电泳图。  相似文献   

10.
自从发现人类免疫缺陷病毒1型(HIV-1)是引起获得性免疫缺陷综合征(AIDS)的病原体后,人们对HIV-1与人体相互作用的过程进行了深入研究.通过研究发现了HIV-1与机体相互作用的多种机制,例如HIV-1主要侵犯人体以CD4 T细胞为主的表达其结合表位(如CCR5和CXCR4)的免疫活性细胞[1].目前研究者在正常机体内发现多种物质与HIV-1致病有关.例如APOBEC蛋白(人体内主要为APOBEC3G),当HIV-1侵入机体后,该蛋白表达减少,这一过程在HIV-1的致病过程中发挥重要作用.通过对这些蛋白或分子的研究,进一步揭示了HIV-1的致病机制,为治疗HIV感染/AIDS提供了新思路.同时不同的HIV-1感染细胞模型的构建为AIDS的研究提供了多种工具.  相似文献   

11.
Tetherin/BST2 was identified in 2008 as the cellular factor responsible for restricting HIV-1 replication at a very late stage in the lifecycle. Tetherin acts to retain virion particles on the plasma membrane after budding has been completed. Infected cells that express large amounts of tetherin display large strings of HIV virions that remain attached to the plasma membrane. Vpu is an HIV-1 accessory protein that specifically counteracts the restriction to virus release contributed by tetherin. Tetherin is an unusual Type II transmembrane protein that contains a GPI anchor at its C-terminus and is found in lipid rafts. The leading model for the mechanism of action of tetherin is that it functions as a direct physical tether bridging virions and the plasma membrane. However, evidence that tetherin functions as a physical tether has thus far been indirect. Here we demonstrate by biochemical and immunoelectron microscopic methods that endogenous tetherin is present on the viral particle and forms a bridge between virion particles and the plasma membrane. Endogenous tetherin was found on HIV particles that were released by partial proteolytic digestion. Immunoelectron microscopy performed on HIV-infected T cells demonstrated that tetherin forms an apparent physical link between virions and connects patches of virions to the plasma membrane. Linear filamentous strands that were highly enriched in tetherin bridged the space between some virions. We conclude that tetherin is the physical tether linking HIV-1 virions and the plasma membrane. The presence of filaments with which multiple molecules of tetherin interact in connecting virion particles is strongly suggested by the morphologic evidence.  相似文献   

12.
Viral protein U (Vpu) is a type 1 membrane-associated accessory protein that is unique to human immunodeficiency virus type 1 (HIV-1) and a subset of related simian immunodeficiency virus (SIV). The Vpu protein encoded by HIV-1 is associated with two primary functions during the viral life cycle. First, it contributes to HIV-1-induced CD4 receptor downregulation by mediating the proteasomal degradation of newly synthesized CD4 molecules in the endoplasmic reticulum (ER). Second, it enhances the release of progeny virions from infected cells by antagonizing Tetherin, an interferon (IFN)-regulated host restriction factor that directly cross-links virions on host cell-surface. This review will mostly focus on recent advances on the role of Vpu in CD4 downregulation and Tetherin antagonism and will discuss how these two functions may have impacted primate immunodeficiency virus cross-species transmission and the emergence of pandemic strain of HIV-1.  相似文献   

13.
Tetherin (Bst2/CD317/HM1.24) is an interferon-induced antiviral host protein that inhibits the release of many enveloped viruses by tethering virions to the cell surface. The HIV-1 accessory protein, Vpu, antagonizes Tetherin through a variety of proposed mechanisms, including surface downregulation and degradation. Previous studies have demonstrated that mutation of the transmembrane domains (TMD) of both Vpu and Tetherin affect antagonism, but it is not known whether Vpu and Tetherin bind directly to each other. Here, we use cysteine-scanning mutagenesis coupled with oxidation-induced cross-linking to demonstrate that Vpu and Tetherin TMDs bind directly to each other in the membranes of living cells and to map TMD residues that contact each other. We also reveal a property of Vpu, namely the ability to displace Tetherin from sites of viral assembly, which enables Vpu to exhibit residual Tetherin antagonist activity in the absence of surface downregulation or degradation. Elements in the cytoplasmic tail domain (CTD) of Vpu mediate this displacement activity, as shown by experiments in which Vpu CTD fragments were directly attached to Tetherin in the absence of the TMD. In particular, the C-terminal α-helix (H2) of Vpu CTD is sufficient to remove Tetherin from sites of viral assembly and is necessary for full Tetherin antagonist activity. Overall, these data demonstrate that Vpu and Tetherin interact directly via their transmembrane domains enabling activities present in the CTD of Vpu to remove Tetherin from sites of viral assembly.  相似文献   

14.
The Vpu accessory protein promotes HIV-1 release by counteracting Tetherin/BST-2, an interferon-regulated restriction factor, which retains virions at the cell-surface. Recent reports proposed β-TrCP-dependent proteasomal and/or endo-lysosomal degradation of Tetherin as potential mechanisms by which Vpu could down-regulate Tetherin cell-surface expression and antagonize this restriction. In all of these studies, Tetherin degradation did not, however, entirely account for Vpu anti-Tetherin activity. Here, we show that Vpu can promote HIV-1 release without detectably affecting Tetherin steady-state levels or turnover, suggesting that Tetherin degradation may not be necessary and/or sufficient for Vpu anti-Tetherin activity. Even though Vpu did not enhance Tetherin internalization from the plasma membrane (PM), it did significantly slow-down the overall transport of the protein towards the cell-surface. Accordingly, Vpu expression caused a specific removal of cell-surface Tetherin and a re-localization of the residual pool of Tetherin in a perinuclear compartment that co-stained with the TGN marker TGN46 and Vpu itself. This re-localization of Tetherin was also observed with a Vpu mutant unable to recruit β-TrCP, suggesting that this activity is taking place independently from β-TrCP-mediated trafficking and/or degradation processes. We also show that Vpu co-immunoprecipitates with Tetherin and that this interaction involves the transmembrane domains of the two proteins. Importantly, this association was found to be critical for reducing cell-surface Tetherin expression, re-localizing the restriction factor in the TGN and promoting HIV-1 release. Overall, our results suggest that association of Vpu to Tetherin affects the outward trafficking and/or recycling of the restriction factor from the TGN and as a result promotes its sequestration away from the PM where productive HIV-1 assembly takes place. This mechanism of antagonism that results in TGN trapping is likely to be augmented by β-TrCP-dependent degradation, underlining the need for complementary and perhaps synergistic strategies to effectively counteract the powerful restrictive effects of human Tetherin.  相似文献   

15.
Bst-2/Tetherin inhibits the release of HIV by tethering newly formed virus particles to the plasma membrane of infected cells. Although the mechanisms of Tetherin-mediated restriction are increasingly well understood, the biological relevance of this restriction in the natural target cells of HIV is unclear. Moreover, whether Tetherin exerts any restriction on the direct cell-cell spread of HIV across intercellular contacts remains controversial. Here we analyse the restriction endogenous Tetherin imposes on HIV transmission from primary human macrophages, one of the main targets of HIV in vivo. We find that the mRNA and protein levels of Tetherin in macrophages are comparable to those in T cells from the same donors, and are highly upregulated by type I interferons. Improved immunocytochemistry protocols enable us to demonstrate that Tetherin localises to the cell surface, the trans-Golgi network, and the macrophage HIV assembly compartments. Tetherin retains budded virions in the assembly compartments, thereby impeding the release and cell-free spread of HIV, but it is not required for the maintenance of these compartments per se. Notably, using a novel assay to quantify cell-cell spread, we show that Tetherin promotes the transfer of virus clusters from macrophages to T cells and thereby restricts the direct transmission of a dual-tropic HIV-1. Kinetic analyses provide support for the notion that this direct macrophage-T cell spread is mediated, at least in part, by so-called virological synapses. Finally, we demonstrate that the viral Vpu protein efficiently downregulates the cell surface and overall levels of Tetherin, and thereby abrogates this HIV restriction in macrophages. Together, our study shows that Tetherin, one of the most potent HIV restriction factors identified to date, can inhibit virus spread from primary macrophages, regardless of the mode of transmission.  相似文献   

16.

Background

Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu). It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the red-queen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption.

Methodology/Principal Findings

Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implying that the primate Tetherin may retain broad spectrum of antiviral activity by maintaining structure stability.

Conclusions/Significance

These results conclude that the molecular evolution of Tetherin may be attributed to the host–virus arms race, supporting the Red Queen hypothesis, and Tetherin may be in an intermediate stage in transition from neutral to pervasive adaptive evolution.  相似文献   

17.
Tetherin, a recently identified interferon (IFN)-inducible, type 2 transmembrane protein, has been shown to be a cellular antiviral restriction factor that retains newly formed virions in infected cells. Thus, tetherin plays an important role in the innate cell-autonomous immune response. The aim of this study was to examine the antiviral activities of tetherin in vesicular stomatitis virus infections of murine neuronal cells. Both IFN-β and IFN-γ induce the expression of tetherin mRNA and protein. Tetherin knockdown experiments were carried out by transfection of tethrin shRNA into murine neuroblastoma cells using a vector containing the pCMV-driven tGFP gene. The efficiency of transfection was monitored through GFP expression by the transfected cells. Selected transfected cells were used for further mRNA and protein analysis, fluorescent immunocytolocalization, and viral infection to study the impact of tetherin knockdown. Our research indicates that tetherin is expressed on the outer face of the plasma membrane of murine neuroblastoma cells, its expression can be induced with both IFN-γ and IFN-β, and tetherin restricts progeny virus release up to 100-fold in mammalian neurons, thus contributing to a potent antiviral state within the host cell.  相似文献   

18.
Chiang K  Rice AP 《Future virology》2011,6(2):209-221
Cellular restriction of HIV-1 replication has traditionally been thought of as protein mediated: APOBEC3G hypermutates HIV-1 genomic RNA, but is counteracted by Vif; Tetherin inhibits the release of budding virions but is counteracted by Vpu. In recent years, new evidence suggesting that miRNAs and other components of the miRNA pathway act as HIV-1 restriction factors has come to light, along with the identification of strategies that HIV-1 employs to surmount these host obstacles. In this article, we summarize and discuss the literature to date regarding the complex relationship between HIV-1 and miRNA-mediated inhibition.  相似文献   

19.
Tetherin (also known as BST2, CD317 or HM1.24) has recently been reported to inhibit a wide range of viruses. However, the antiviral mechanism of action of tetherin has not been determined. Both ends of the tetherin molecule are associated with the plasma membrane and it forms a homodimer. Therefore, a model in which progeny virions are retained on the cell surface by dimer formation between tetherin molecules on the viral envelope and plasma membrane has been proposed as the antiviral mechanism of action of this molecule. To investigate this possibility, we examined the correlation between dimerization and antiviral activity of tetherin in Lassa and Marburg virus-like particle production systems using tetherin mutants deficient in dimer formation. However, the tetherin mutant with complete loss of dimerization activity still showed apparent antiviral activity, indicating that dimerization of tetherin is not essential for its antiviral activity. This suggests that tetherin retains progeny virions on the cell surface by a mechanism other than dimerization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号